
1

Basic examples of screening studies, extracting data and
meta-analysis with the metagear package for R

Marc J. Lajeunesse (lajeunesse@usf.edu)

University of South Florida, March 24nd 2017 (vignette v. 0.4 for metagear v. 0.4)

Table of Contents
Introduction .. 2

Acknowledgements .. 2
How to cite? ... 2
Installation and Dependencies ... 2
Report a bug? Have comments or suggestions? .. 3

Delegating reference screening effort to a team ... 3
Screening abstracts of references ... 8
Workflow example ... 9
Downloading PDFs .. 14
Scraping Web of Science for bibliographic data .. 16
Generating PRISMA plots .. 17

Generating different PRISMA plot layouts .. 18
Notes on PRISMA plotting since metagear v. 0.1 and 0.2 .. 20

Automated extraction of data from scatterplots ... 20
Example 1 | figure_scatterPlot() default settings ... 20
Example 2 | tweaking defaults for image size .. 22
Example 3 | more tweaking based on color, size, and empty points ... 23

Automated extraction of data from bar plots ... 25
Example 1 | figure_barPlot() default settings .. 25
Example 2 | tweaking defaults for horizontal columns .. 27

Meta-analysis with multiple effect sizes that share a common control .. 28
References .. 30

http://lajeunesse.myweb.usf.edu/
mailto:lajeunesse@usf.edu

2

Introduction

The metagear package for R contains tools for facilitating systematic reviews, data
extraction, and meta-analyses. It aims to facilitate research synthesis as a whole, by
providing a single source for several of the common tasks involved in screening studies,
extracting outcomes from studies, and performing statistical analyses on these outcomes
using meta-analysis. Below are a few illustrative examples of applications of these
functionalities.

Updates to these examples will be posted on our research webpage at USF, and for previous
vignette versions see v. 0.3, v. 0.2 and v. 0.1.

For the source code of metagear see: http://cran.r-project.org/web/packages/metagear/index.html.

Acknowledgements

Funding for metagear is supported by National Science Foundation (NSF) grants DBI-
1262545 and DEB-1451031.

I also thank J. Richardson, J. Zydek, N. Ogburn, B. MacNeill, J. Zloty, and my colleagues in the
OpenMEE team, J. Gurevitch and B. Wallace, for persuading me to develop tools in R.

How to cite?
Lajeunesse, M.J. (2016) Facilitating systematic reviews, data extraction and meta-analysis

with the metagear package for R. Methods in Ecology and Evolution 7: 323-330.
article link

Installation and Dependencies

Metagear has several dependencies that need to be installed and loaded prior to use in R.
The first is the EBImage R package (Pau et al. 2010) available only from Bioconductor
repository. The second is associated with metagear's abstract_screener() function that
generates a GUI to help quickly sift bibliographic data from multiple studies.

http://www.r-project.org/
https://en.wikipedia.org/wiki/Systematic_review
https://en.wikipedia.org/wiki/Meta-analysis
http://lajeunesse.myweb.usf.edu/
http://lajeunesse.myweb.usf.edu/metagear/metagear_basic_vignette_v0.3.html
http://lajeunesse.myweb.usf.edu/metagear/metagear_basic_vignette_v0.2.html
http://lajeunesse.myweb.usf.edu/metagear/metagear_basic_vignette_v0.1.html
http://cran.r-project.org/web/packages/metagear/index.html
http://www.cebm.brown.edu/openmee/
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12472/abstract
https://www.bioconductor.org/

3

To properly install metagear, use the following script in R:
first load Bioconductor resources needed to install the EBImage package
and accept/download all of its dependencies
source("https://bioconductor.org/biocLite.R")
biocLite("EBImage")

then load metagear
library(metagear)

The first loading of metagear using library(metagear) will trigger the download of the
gWidgets package and associated toolkits needed to build GUI interfaces. A small window
will also prompt you to download GTK+ asking "Need GTK+ ?". From the listed options
answer: "Install GTK+" and click "OK". Once installed, these will not be downloaded again.

Sometimes there is an issue with the installation of GTK+, see here or here for advice based
on the Rattle R Package. Note that both Rattle and metagear use the same GUI
dependencies. Also sometimes the installation will freeze; however, re-starting the R
session can fix this issue.

Report a bug? Have comments or suggestions?

Please email me any bugs, comments, or suggestions and I'll try to include them in future
releases: lajeunesse@usf.edu. Also try to include metagear in the subject heading of your
email. Finally, I'm open to almost anything, but expect a lag before I respond and/or new
additions are added.

Delegating reference screening effort to a team

One of the first tasks of a systematic review is to screen the titles and abstracts of study
references to assess their relevance for the synthesis project. For example, after a
bibliographic search using Web of Science, there may be thousands of references
generated; references from experimental studies, modeling studies, review papers,
commentaries, etc. These need to be reviewed individually as a first pass to exclude those
that do not fit the synthesis project; such as excluding simulation studies that do not report
experimental outcomes useful for estimating an effect size.

However, individually screening thousands of references is time consuming, and large
synthesis projects may benefit from delegating this screening effort to a research team.

http://www.learnanalytics.in/blog/?p=31
http://lajeunesse.myweb.usf.edu/metagear/Installing_%20Rattle.pdf
mailto:lajeunesse@usf.edu
https://en.wikipedia.org/wiki/Bibliographic_database
https://en.wikipedia.org/wiki/Effect_size

4

Having multiple people screen references also provides an opportunity to assess the
repeatability of these screening decisions.

In this example, we have the following goals:

1. Initialize a dataframe containing bibliographic data (tile, abstract, journal) from
multiple study references.

2. Distribute these references randomly to two team members.
3. Merge and summarize the screening efforts of this team.

First, let's start by loading and exploring the contents of a pre-packaged dataset from
metagear that contains the bibliographic information of 11 journal articles
(example_references_metagear). These data are a subset of references generated from a
search in Web of Science for "Genome size", and contain the abstracts, titles, volume, page
numbers, and authors of these references.
load package
library(metagear)
load a bibliographic dataset with the authors, titles, and abstracts of multiple study refer
ences
data(example_references_metagear)
display the bibliographic variables in this dataset
names(example_references_metagear)

[1] "AUTHORS" "YEAR" "TITLE" "JOURNAL" "VOLUME" "LPAGES" "UPAGES" "DOI"
"ABSTRACT"

display the various Journals that these references were published in
example_references_metagear["JOURNAL"]

JOURNAL
1 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
2 EVOLUTIONARY ECOLOGY RESEARCH
3 AMERICAN NATURALIST
4 GENE
5 VIRUS GENES
6 JOURNAL OF SHELLFISH RESEARCH
7 JOURNAL OF GENERAL MICROBIOLOGY
8 APPLIED GEOCHEMISTRY
9 JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY
10 BIOLOGIA PLANTARUM
11 GENOMICS

Our next step is to initialize/prime this dataset for screening tasks. Our goal is to distribute
screening efforts to two screeners/reviewers: "Christina" and "Luc". Here each reviewer
will screen a separate subset of these references (a forthcoming example will review how
to set up a dual screening design where each member screens the same references). The
dataset first needs to be initialized as follows:
prime the study-reference dataset
theRefs <- effort_initialize(example_references_metagear)
display the new columns added by effort_initialize
names(theRefs)

[1] "STUDY_ID" "REVIEWERS" "INCLUDE" "AUTHORS" "YEAR" "TITLE" "JOURNAL" "V
OLUME" "LPAGES" "UPAGES" "DOI" "ABSTRACT"

5

Note that the effort_initialize() function added three new columns: "STUDY_ID" which
is a unique number for each reference (e.g., from 1 to 11), "REVIEWERS" an empty column
with NAs that will be later populated with our reviewers (e.g., Christina and Luc), and
finally the "INCLUDE" column, which will later contain the screening efforts by the two
reviewers.

Screening efforts are essentially how individual study references get coded for inclusion in
the synthesis project; currently the "INCLUDE" column has each reference coded as "not
vetted", indicating that each reference has yet to be screened.

Our next task is to delegate screening efforts to our two reviewers Christina and Luc. Our
goal is to randomly distribute these references to each reviewer.
randomly distribute screening effort to a team
theTeam <- c("Christina", "Luc")
theRefs_unscreened <- effort_distribute(theRefs, reviewers = theTeam)
display screening tasks
theRefs_unscreened[c("STUDY_ID", "REVIEWERS")]

STUDY_ID REVIEWERS
1 1 Christina
2 2 Luc
3 3 Luc
4 4 Christina
5 5 Christina
6 6 Christina
7 7 Luc
8 8 Christina
9 9 Luc
10 10 Christina
11 11 Luc

The screening efforts can also be delegated unevenly, such as below where Luc will take on
80% of the screening effort:
randomly distribute screening effort to a team, but with Luc handeling 80% of the work
theRefs_unscreened <- effort_distribute(theRefs, reviewers = theTeam, effort = c(20, 80))
theRefs_unscreened[c("STUDY_ID", "REVIEWERS")]

STUDY_ID REVIEWERS
1 1 Luc
2 2 Christina
3 3 Luc
4 4 Luc
5 5 Luc
6 6 Luc
7 7 Luc
8 8 Luc
9 9 Christina
10 10 Luc
11 11 Luc

The effort can also be redistributed with the effort_redistribute() function. In the
above example we assigned Luc 80% of the work. Now let's redistribute half of Luc's work
to a new team member "Patsy".

6

theRefs_Patsy <- effort_redistribute(theRefs_unscreened,
 reviewer = "Luc",
 remove_effort = 50, # move 50% of Luc's work to Patsy
 reviewers = c("Luc", "Patsy")) # team members loosing and
picking up work
theRefs_Patsy[c("STUDY_ID", "REVIEWERS")]

STUDY_ID REVIEWERS
2 2 Christina
9 9 Christina
1 1 Luc
3 3 Luc
4 4 Luc
5 5 Patsy
6 6 Patsy
7 7 Luc
8 8 Luc
10 10 Patsy
11 11 Patsy

The references have now been randomly assigned to either Christina or Luc. The whole
initialization of the reference dataset with effort_initialize() can be abbreviated with
effort_distribute(example_references_metagear, reviewers = c("Christina",
"Luc"), initialize = TRUE).

Now that screening tasks have been distributed, the next stage is for reviewers to start the
manual screening of each assigned reference. This is perhaps best done by providing a
separate file of these references to Christina and Luc. They can then work on screening
these references separately and remotely. Once the screening is complete, we can then
merge these files into a complete dataset (we'll get to this later).

The effort_distribute() function can also save to file each reference subset; these can be
given to Christina and Luc to start their work. This is done by setting the 'save_split'
parameter to TRUE.
randomly distribute screening effort to a team, but with Luc handling 80% of the work,
but also saving these screening tasks to separate files for each team member
theRefs_unscreened <- effort_distribute(theRefs, reviewers = theTeam, effort = c(20, 80), save
_split = TRUE)

2 files saved in: C:/Users/lajeunesse/Desktop/R_projects/metagear_0.3.2/metagear/vignettes

theRefs_unscreened[c("STUDY_ID", "REVIEWERS")]

STUDY_ID REVIEWERS
1 1 Luc
2 2 Luc
3 3 Luc
4 4 Luc
5 5 Luc
6 6 Luc
7 7 Luc
8 8 Christina
9 9 Christina
10 10 Luc
11 11 Luc

list.files(pattern = "effort")

7

[1] "effort_Christina.csv" "effort_Luc.csv"

These two effort_*.csv files contain the assigned references for Christina and Luc. These can
be passed on to each team member so that they can begin screening/coding each reference
for inclusion in the synthesis project.

References should be coded as "YES" or "NO" for inclusion, but can also be coded as
"MAYBE" if bibliographic information is missing or there is inadequate information to
make a proper assessment of the study.

The abstract_screener() function can be used to facilitate this screening process (an
example is forthcoming), but for the sake of introducing how screening efforts can be
merged and summarized, I manually coded all the references in both of Christina's and
Luc's effort_*.csv files. Essentially, I randomly coded each references as either "YES", "NO",
or "MAYBE". These files now contain the completed screening efforts.

We can merge these two files with the completed screening efforts using the
effort_merge() function, as well as summarize the outcome of screening tasks using the
effort_summary() function.
merge the effort_Luc.csv and effort_Christina.csv
WARNING: will merge all files named "effort_*" in directory
theRefs_screened <- effort_merge()
theRefs_screened[c("STUDY_ID", "REVIEWERS", "INCLUDE")]

STUDY_ID REVIEWERS INCLUDE
1 8 Christina MAYBE
2 9 Christina MAYBE
3 1 Luc MAYBE
4 2 Luc YES
5 3 Luc YES
6 4 Luc MAYBE
7 5 Luc YES
8 6 Luc NO
9 7 Luc YES
10 10 Luc YES
11 11 Luc MAYBE

theSummary <- effort_summary(theRefs_screened)

=== SCREENING EFFORT SUMMARY ===

5 candidate studies identified
1 studies excluded
5 challenging studies needing additional screening

11 TOTAL SCREENED

=== SCREENING DESIGN SUMMARY ===

MAYBE NO YES TOTAL %
Christina 2 0 0 2 18.18182
Luc 3 1 5 9 81.81818
TOTAL 5 1 5 11 100.00000

8

The summary of screening tasks describes the outcomes of which references had studies
appropriate for the synthesis project, while also outlining which need to be re-assessed.
The team should discuss these challenging references and decide if they are appropriate for
inclusion or track down any additional/missing information needed to make proper
assessment of their inclusion.

Screening abstracts of references

Metagear offers a simple abstract screener to quickly sift through the abstracts and titles
of multiple references. Here is some script to help initialize the screener GUI in R:
load package
library(metagear)

initialize bibliographic data and screening tasks
data(example_references_metagear)
effort_distribute(example_references_metagear, initialize = TRUE, reviewers = "marc", save_spl
it = TRUE)

initialize screener GUI
abstract_screener("effort_marc.csv", aReviewer = "marc")

The GUI itself will appear as a single window with the first title/abstract listed in the .csv
file. If abstracts have already been screened/coded, it will begin at the nearest reference
labeled as "not vetted". The SEARCH WEB button opens the default browser and searches
Google with the title of the reference. The YES, MAYBE, NO buttons, which also have
shortcuts ALT-Y and ALT-N, are used to code the inclusion/exclusion of the reference. Once
clicked/coded the next reference is loaded. The SAVE button is used to save the coding
progress of screening tasks. It will save coding progress directly to the loaded .csv file.
Closing the GUI and not saving will result in the loss of screening efforts relative to
last save.

Here's what to expect with this GUI (note that depending on the platform running R, the
layout of this GUI will differ slightly):

9

Workflow example

Here I provide a quick example of extracting effect size data from a journal article PDF.

In this example, we have the following goals:

1. Get the DOI from a study reference.
2. Use this DOI to download a PDF of the journal article.
3. Extract all the figures from this PDF.
4. And finally, extract the effect size from one of these figures.

First, let's start by using one of the DOIs from the pre-packaged metagear dataset that
contains the bibliographic information of 11 journal articles
(example_references_metagear). These data are a subset of references generated from a

10

search in Web of Science for "Genome size", and contain the abstracts, titles, volume, page
numbers, and authors of these references.
load package
library(metagear)
load a bibliographic dataset with the DOIs
data(example_references_metagear)
display one of the DOI's reference
theBiblio <- scrape_bibliography(example_references_metagear$DOI[4])

Ruas et al. (2008) Characterization, genomic organization and chromosomal distribution of T
y1-copia retrotransposons in species of Hypochaeris %252528Asteraceae%252529. GENE 412, 39-49.

Our next goal is to download a PDF of the Ruas et al.'s (2008) journal article and then
extract its figures.
locate and download a PDF of this journal article
PDF_download(example_references_metagear$DOI[4], theFileName = "Ruas_2008")

Collecting PDF from DOI: 10.1016/j.gene.2008.01.009

Extraction 1 of 2: HTML script....

successful

Extraction 2 of 2: PDF download...

successful

[1] "downloaded"

A PDF was found, successfully downloaded, and saved as "Ruas_2008.pdf". Next let's
extract the figures from this PDF and select the one with potential effect size data. Here we
will extract and save the figures as image files (jpegs), and then plot each one to see which
is a regression figure.
extract figures from the PDF
imageFiles <- PDF_extractImages("Ruas_2008.pdf")

plot all figures with file names
par(mfrow=c(2,3), las = 1)
for(i in 1:6) {
 figure_display(imageFiles[i])
 mtext(imageFiles[i], col = "red", cex = 1.2)
}

11

It seems like the file "Ruas_2008_bin_4.jpg" is a regression plot; let's try to extract the effect
size (correlation coefficient) from this regression.
plot the regression figure
figure_display("Ruas_2008_bin_4.jpg")

extract the correlation coefficient
rawData <- figure_scatterPlot("Ruas_2008_bin_4.jpg")

regression fit: Y = 96.72933 + 0.07556 * X, R-squared = 0.00652

12

Pearson's r = 0.0807309, var(r) = 0.0493504, N = 22

Well... regression points were detected using the default settings of figure_scatterPlot,
but so were many more objects. Let's change the settings to detect diamond points rather
than circles, and let's also increase the point size since the figure image is large.
plot the regression figure
rawData <- figure_scatterPlot("Ruas_2008_bin_4.jpg",
 point_shape = "diamond", # circle shapes to diamonds
 point_size = 5) # increase from 3 to 5 in size

regression fit: Y = 12.27042 + 0.84821 * X, R-squared = 0.74037

Pearson's r = 0.8604483, var(r) = 0.0084259, N = 10

The regression point detection was much more successful here, and although some
detections were flagged as potential errors, every point in the figure was detected. Further,

13

the estimated regression coefficients were very similar to those reported within the figure.
To get better coefficients it is necessary to explicitly define the scale of each axis scale as
follows (however note that the correlation coefficient will not change):
plot the regression figure
rawData <- figure_scatterPlot("Ruas_2008_bin_4.jpg",
 point_shape = "diamond", # circle shapes to diamonds
 point_size = 5, # increase from 3 to 5 in size
 X_min = 0.12,
 X_max = 0.52,
 Y_min = 1.8,
 Y_max = 7.2)

regression fit: Y = 0.76064 + 11.45083 * X, R-squared = 0.74037

Pearson's r = 0.8604483, var(r) = 0.0084259, N = 10

The estimated coefficients are not as reported; perhaps they are reversed in the figure or
there are data points not present in the figure and these are found outside the visual range
of each axis.

14

Downloading PDFs

Once references have been screened, metagear can be used to download and organize the
full-texts of these references. However, note that the download success of these PDFs is
entirely conditional on the journal subscription coverage of the host institution running
metagear. Also note that metagear only supports the download of a PDF article if the DOI
(digital object identifier) is available for that article.

In this example, we have the following goals:

1. Download a single PDF with the PDF_download() function.
2. Download multiple PDFs with the PDFs_collect() function.

Let's start by loading the pre-packaged reference dataset in metagear that contains the
bibliographic information of 11 journal articles (example_references_metagear). This
dataset includes a column "DOI" which contains the DOI of each article (if available).
load package
library(metagear)
load a bibliographic dataset with the DOIs
data(example_references_metagear)
display the year published of each study reference and their DOIs
example_references_metagear[c("JOURNAL", "DOI")]

JOURNAL DOI
1 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 10.1016/j.bbrc.2011.10.017
2 EVOLUTIONARY ECOLOGY RESEARCH <NA>
3 AMERICAN NATURALIST 10.1086/319928
4 GENE 10.1016/j.gene.2008.01.009
5 VIRUS GENES 10.1007/s11262-012-0864-0
6 JOURNAL OF SHELLFISH RESEARCH 10.2983/035.029.0428
7 JOURNAL OF GENERAL MICROBIOLOGY <NA>
8 APPLIED GEOCHEMISTRY 10.1016/S0883-2927(02)00054-9
9 JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY <NA>
10 BIOLOGIA PLANTARUM 10.1023/A:1012426306493
11 GENOMICS 10.1016/j.ygeno.2013.09.002

Note that references collected from bibliographic databases like Web of Science will often
be incomplete. For example, the study published in EVOLUTIONARY ECOLOGY RESEARCH
does not have a DOI (described above as NA). This is because EVOLUTIONARY ECOLOGY
RESEARCH is an independently published journal and does not provide DOIs for their
research articles.

However, a DOI for the AMERICAN NATURALIST study is available, and let's use it to fetch
the PDF.
load package
PDF_download("10.1086/319928", theFileName = "AMNAT_metagear")

Collecting PDF from DOI: 10.1086/319928

Extraction 1 of 2: HTML script....

successful

https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/Digital_object_identifier

15

Extraction 2 of 2: PDF download...

successful

[1] "downloaded"

The downloader provides information on the download success, and in this case a PDF was
successfully retrieved. It was saved in the working directory of the R process (to see this
directory use getwd()).

Now let's try downloading all the PDFs from our reference dataset. This can be done using
the PDFs_collect() function.
(optional) initialize the reference dataset to help generate standardized fileNames (e.g., S
TUDY_ID numbers)
theRefs <- effort_initialize(example_references_metagear)
fetch the PDFs
collectionOutcomes <- PDFs_collect(theRefs, DOIcolumn = "DOI", FileNamecolumn = "STUDY_ID", qu
iet = TRUE)

--- Starting download attempts of 11 DOI ---

Harvesting 1 of 11:

Harvesting 2 of 11:

Harvesting 3 of 11:

Harvesting 4 of 11:

Harvesting 5 of 11:

Harvesting 6 of 11:

Harvesting 7 of 11:

Harvesting 8 of 11:

Harvesting 9 of 11:

Harvesting 10 of 11:

Harvesting 11 of 11:

table(collectionOutcomes$downloadOutcomes)

downloaded no DOI
8 3

16

Eight of the 11 references had successful PDF downloads; the remaining 3 did not have
DOIs available. These PDFs will need to be checked to determine if their contents are the
desired research articles. Also note that the downloading process will take time, and in
general, it will take ~ 45 seconds to detect and download a single PDF.

Scraping Web of Science for bibliographic data

Metagear can also scrape Web of Science (WOS) for bibliographic data if the DOI (digital
object identifier) of a study is available. Currently, only the authors, title, publication year,
journal, issue, page numbers, number of references, number of citations, and the journal
impact factor (and year released) are fetched for a study. By default,
scrape_bibliography() will print an MLA-like formatted citation of the article.

For example, let's quickly scrape WOS for Carmona et al.’s (2011) reference and its number
of citations.
load package
library(metagear)
display the DOI's reference and number of citations
theBiblio <- scrape_bibliography("10.1111/j.1365-2435.2010.01794.x")

Carmona et al. (2011) Plant traits that predict resistance to herbivores. FUNCTIONAL ECOLOG
Y 25, 358-367.

number of citations
print(paste(theBiblio$N_citations, "citations as of", theBiblio$date_scraped))

[1] "155 citations as of 2017-03-24"

https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/Digital_object_identifier

17

Generating PRISMA plots

PRISMA plots (preferred reporting items for systematic reviews and meta-analyses), or
PRISMA flow diagrams, are an important and simple way to present the flow of information
on how studies were found, collated, and screened for systematic reviews and meta-
analysis (Liberati et al. 2009). Generally, they depict from top to bottom the original
number of studies identified through bibliographic databases (and other sources) and how
this population of studies was culled for inclusion into the synthesis project.

Metagear offers an easy way to generate PRISMA plots, this requires a list of the 'phases' of
the screening process. It also requires certain phases to be labeled to properly depict the
start (with the string START_PHASE:) and exclusion (string EXCLUDE_PHASE:) phases of the
flow diagram. Below is a quick example.
load package
library(metagear)

phases <- c("START_PHASE: # of studies identified through database searching",
 "START_PHASE: # of additional studies identified through other sources",
 "# of studies after duplicates removed",
 "# of studies with title and abstract screened",
 "EXCLUDE_PHASE: # of studies excluded",
 "# of full-text articles assessed for eligibility",
 "EXCLUDE_PHASE: # of full-text articles excluded, not fitting eligibility criteria
",
 "# of studies included in qualitative synthesis",
 "EXCLUDE_PHASE: # studies excluded, incomplete data reported",
 "final # of studies included in quantitative synthesis (meta-analysis)")
thePlot <- plot_PRISMA(phases)

https://en.wikipedia.org/wiki/Preferred_reporting_items_for_systematic_reviews_and_meta-analyses

18

Generating different PRISMA plot layouts
There are also several different PRISMA plot layouts available to generate simpler or more
colourful schemes. Below are a few of the various designs available, and for example, here
the cinnamonMint scheme can be generated using: plot_PRISMA(phases, design =
"cinnamonMint").

19

It is also possible to individually customize various design features of the PRISMA plot.
Here are some of the features that can be modified:

parameter options
S color of start phases (default: white)
P color of the main phases (default: white)
E color of the exclusion phases (default: white)
F color of the final phase (default: white)
fontSize the size of the font (default: 12)
fontColor the font color (default: black)
fontFace either plain, bold, italic, or bold.italic (default: plain)
flatArrow arrows curved when FALSE (default); arrows square when TRUE
flatBox boxes curved when FALSE (default); boxes square when TRUE

Here's a quick example on how to change the color of the exclusion phases:
load package
library(metagear)

phases <- c("START_PHASE: # of studies identified through database searching",
 "# of studies after duplicates removed",
 "# of studies with title and abstract screened",
 "EXCLUDE_PHASE: # of studies excluded",
 "# of full-text articles assessed for eligibility",
 "EXCLUDE_PHASE: # of full-text articles excluded, not fitting eligibility criteria
",
 "# of studies included in qualitative synthesis",
 "EXCLUDE_PHASE: # studies excluded, incomplete data reported",
 "final # of studies included in quantitative synthesis (meta-analysis)")

PRISMA plot with custom layout
thePlot <- plot_PRISMA(phases, design = c(E = "lightcoral", flatArrow = TRUE))

20

Notes on PRISMA plotting since metagear v. 0.1 and 0.2
Previous versions of metagear (v. 0.2 and 0.1) offered a more flexible version of
plot_PRISMA() that allowed for proper rescaling of PRISMA objects when the user
manually changed the window size of the plot. Unfortunately, this version did not load well
when bundled with the package and yielded unusual plots (I would love to hear any tips on
how to properly manage viewports and grid objects within a package!). Anyway, these
versions are available on my website and allow for higher-quality PRISMA plots; these old
functions can be downloaded here and work best when not loaded with metagear.

Automated extraction of data from scatterplots

Extracting data from a figure image is a common challenge when trying to extract outcomes
(effect sizes) from a study. The scrapping (reverse engineering) of data points from a
scatterplot image can be automated with metagear.

In these examples, we have the following goals:

1. Extract data points from an image containing a scatterplot using the
figure_scatterPlot() default parameters.

2. Tweak the parameters to extract data from scatterplots with various formats (e.g.,
different point shapes, or image sizes).

Example 1 | figure_scatterPlot() default settings
Metagear offers a pre-packaged scatterplot image, and so let's begin with extracting data
from this image, before moving to more advanced applications of figure_scatterPlot().
First, let's load and display the image.
load metagear package and .jpg image manipulation package EBImage
library(metagear)
library(EBImage)
load the scatterplot image, source: Kam et al. (2003) Functional Ecology 17:496-503.
data(Kam_et_al_2003_Fig2)
display the image
figure_display(Kam_et_al_2003_Fig2)

http://lajeunesse.myweb.usf.edu/metagear/metagear_PRISMA_plot_Lajeunesse.zip

21

Now let's use figure_scatterPlot() to scrape data from this image; however, because
Kam_et_al_2003_Fig2 is pre-packaged with metagear it needs to be converted back to a
.jpg before the image can be processed.

The figure_scatterPlot() will by default output three objects:

2. The estimated regression fit of these detected points, as well as the estimated effect
size and variance of the correlation presented in the figure.

3. A raster image of the detected objects painted over the original image. Blue spheres
are detected points, orange spheres are detected clusters of points that could not be
separated, the X-axis in pink, and the Y-axis in green. The points and axes can also be
extracted individually using the figure_detectAllPoints() and
figure_detectAxis() functions.

4. The X and Y data from each detected point on the image, and information on whether
that point was identified as a cluster.

Here are the results of using figure_scatterPlot() on Kam et al.'s (2002) figure.
convert back to .jpg
figure_write(Kam_et_al_2003_Fig2, file = "Kam_et_al_2003_Fig2.jpg")
load the scatterplot image, source: Kam et al. (2003) Functional Ecology 17:496-503.
rawData <- figure_scatterPlot("Kam_et_al_2003_Fig2.jpg")

regression fit: Y = 11.92586 + 0.9077 * X, R-squared = 0.59498

Pearson's r = 0.7713478, var(r) = 0.0034903, N = 49

22

The estimated regression coefficients are very similar to those originally reported by Kam
et al.'s (2002) study; which were Y = 12.03 + 0.907 * X with an R2 = 0.59 and a sample size
of N = 51.

Example 2 | tweaking defaults for image size
Now let's try to extract data from another image. This time the figure is relatively small and
figure_scatterPlot() will need some adjustments based on this size difference. Also, this
time we will scale the data extractions to the X- and Y-axis scale; this is useful to calculate
the original regression coefficients. Here, the minimum and maximum presented in the
figure for the X-axis is 0 to 50, and 0 to 70 for the Y-axis. However, note that re-scaling the
data does not affect the effect size calculated from the figure, only the estimated regression
coefficients. Let's download the image first from my website and then process it.
download the figure image from my website
figureSource <- "http://lajeunesse.myweb.usf.edu/metagear/example_2_scatterPlot.jpg"
download.file(figureSource, "example_2_scatterPlot.jpg", quiet = TRUE, mode = "wb")
aFig <- figure_read("example_2_scatterPlot.jpg", display = TRUE)

23

because of the small size of the image the axis parameter needed adjustment from 5 to 3
rawData2 <- figure_scatterPlot("example_2_scatterPlot.jpg",
 axis_thickness = 3, # adjusted from 5 to 3 to help detect the t
hin axis
 X_min = 0, # minimum X-value reported in the plot
 X_max = 50, # maximum X-value reported in the plot
 Y_min = 0,
 Y_max = 70)

regression fit: Y = -0.40746 + 1.26962 * X, R-squared = 0.51678

Pearson's r = 0.7188738, var(r) = 0.0179617, N = 15

In this example, because of the small size of the figure, the axis_thinkness parameter
needed to be reduced from 5 to 3. This was sufficient to detect the axis lines and extract the
plotted data.

Example 3 | more tweaking based on color, size, and empty points
In this figure example, we have the case where the image is large (1122px by 780px), the
plotted points are large but empty, and the axis lines are thin and grey. All of these issues
complicate object detection on the figure.
download the figure image from my website
figureSource <- "http://lajeunesse.myweb.usf.edu/metagear/example_3_scatterPlot.jpg"
download.file(figureSource, "example_3_scatterPlot.jpg", quiet = TRUE, mode = "wb")
aFig <- figure_read("example_3_scatterPlot.jpg", display = TRUE)

24

tweaking the figure_scatterPlot() function to improve object detection
rawData3 <- figure_scatterPlot("example_3_scatterPlot.jpg",
 binary_point_fill = TRUE, # set to TRUE to fill empty points
 point_size = 9, # increase from 5 to 9 since points are large
 binary_threshold = 0.8, # increase from 0.6 to 0.8 to include t
he grey objects
 axis_thickness = 3, # decrease from 5 to 3 since axes are thin
 X_min = 0,
 X_max = 850,
 Y_min = 0,
 Y_max = 35)

regression fit: Y = 8.51444 + 0.02396 * X, R-squared = 0.45274

Pearson's r = 0.6728593, var(r) = 0.0019448, N = 156

It looks like figure_scatterPlot() confused some of the regression summary text on the
plot for points. This can be avoided by erasing all superfluous information on the figure
prior to processing with figure_scatterPlot(). However, in our case we are interested in

25

estimating these reported regression coefficients. We can quickly exclude these false
detections since they reside within a specific range on the plot that does not include data
(e.g., values above 25 for Y, and below 305 for X).
remove false detected points from the regression summary presented within the plot
cleaned_rawData3 <- rawData3[which(!(rawData3$X < 350 & rawData3$Y > 25)),]
estimate the regression coefficients
lm(Y ~ X, data = cleaned_rawData3)

Call:
lm(formula = Y ~ X, data = cleaned_rawData3)

Coefficients:
(Intercept) X
6.49148 0.02716

and get R-squared
round(summary(lm(Y ~ X, data = cleaned_rawData3))$r.squared, 4)

[1] 0.6353

The estimated regression coefficients are very similar to those presented within the plot.

Automated extraction of data from bar plots
Bar plots (or bar charts) are a common way to present information in groups or categories.

In these examples, we have the following goals:

1. Extract data points from an image containing a bar plot using the figure_barPlot()
default parameters.

2. Tweak the parameters to extract data from bar plots with various formats (e.g., with
bars with different shading indicating different groups, or bars presented horizontally
rather than vertically).

Example 1 | figure_barPlot() default settings
Let's have a look at the bar plot image provided by metagear called
Kortum_and_Acymyan_2013_Fig4; originally extracted from Kortum & Acymyan (2013;
Journal of Usability Studies 9:14-24).
load metagear package
library(metagear)
load the scatterplot image, source: Kortum & Acymyan (2013) J. of Usability Studies 9:14-24)
.
data(Kortum_and_Acymyan_2013_Fig4)
display the image
figure_display(Kortum_and_Acymyan_2013_Fig4)

https://en.wikipedia.org/wiki/Bar_chart

26

Manual extraction of the bars and their errors will be time consuming here given that there
are 42 separate data points to be gathered (i.e. 14 bars each with upper and lower error
bars). Let's use figure_barPlot() with its default options to extract these 42 points.
convert metagear image object back to .jpg and then extract objects from this .jpg
figure_write(Kortum_and_Acymyan_2013_Fig4, file = "Kortum_and_Acymyan_2013_Fig4.jpg")
rawData <- figure_barPlot("Kortum_and_Acymyan_2013_Fig4.jpg")

In the above image, the detected points for each ballot were painted in blue. Let's have a
closer look at these extracted data.
display extracted points
as.vector(round(rawData, 2))

[1] 15.09 20.52 9.67 21.93 28.30 15.80 25.94 31.37 20.28 29.48 23.11 35.85 34.67 41.04 28
.30 35.85 42.92 28.77 37.74 30.42 45.52 39.15 45.52 32.78 41.75 34.20 49.29 53.77 62.03 45.75
62.50 70.75 54.48 71.70 54.48 62.97 73.35 67.22 79.01 92.45 95.75 88.92

Metagear is not clever enough to know what groupings these extractions belong too;
however, the extractions will be sorted relative to their axis positioning. For example, there
are three extractions that occupy the same X-axis range under the A ballot column. These
three extractions will be grouped together in the figure_barPlot() output. With this in
mind, a little data manipulation is needed to make better sense of these ballot data.

27

extractions are in triplicates with an upper, mean, and lower values, so let's
stack by three and sort within triplicates from lowest to highest
organizedData <- t(apply(matrix(rawData, ncol = 3, byrow = TRUE), 1, sort))
rename rows and columns of these triplicates as presented in Kortum_and_Acymyan_2013_Fig4.jp
g
theExtraction_names <- c("lower 95%CI", "mean SUS score", "upper 95%CI")
theBar_names <- toupper(letters[1:14])
dimnames(organizedData) <- list(theBar_names, theExtraction_names)
organizedData

lower 95%CI mean SUS score upper 95%CI
A 9.669811 15.09434 20.51887
B 15.801887 21.93396 28.30189
C 20.283019 25.94340 31.36792
D 23.113208 29.48113 35.84906
E 28.301887 34.66981 41.03774
F 28.773585 35.84906 42.92453
G 30.424528 37.73585 45.51887
H 32.783019 39.15094 45.51887
I 34.198113 41.74528 49.29245
J 45.754717 53.77358 62.02830
K 54.481132 62.50000 70.75472
L 54.481132 62.97170 71.69811
M 67.216981 73.34906 79.00943
N 88.915094 92.45283 95.75472

Example 2 | tweaking defaults for horizontal columns
Now let's try to extract data from another image where bar-plot is presented horizontally
(i.e. bars stem from the Y-axis).
download the figure image from my website
figureSource <- "http://lajeunesse.myweb.usf.edu/metagear/example_2_barPlot.jpg"
download.file(figureSource, "example_2_barPlot.jpg", quiet = TRUE, mode = "wb")
aFig <- figure_read("example_2_barPlot.jpg", display = TRUE)

rawData2 <- figure_barPlot("example_2_barPlot.jpg",
 horizontal = TRUE, # changed from FALSE since bars are horizontal
 bar_width = 11, # raised from 9 as bars are wide relative to fig.
 Y_min = 0,
 Y_max = 10)

Warning in makeBrush(watershed_thickness, shape = "line", angle = theAngle): 'size' was rou
nded to the next odd number: 301

28

The function also detected the right-most vertical line (part of the figure box) as a
datapoint. The options of figure_barPlot() can be tweaked to avoid this issue; however, it
might be easier to just exclude this extraction given that it has the largest plant biomass
value (i.e. close to 10). Let's exclude this false datapoint and organize the dataset as
presented in the figure.
exclude the false detection
rawData2 <- rawData2[rawData2 < max(rawData2)]
data are in triplicates with an upper, mean, and lower values, so let's
stack by three and sort within triplicates from lowest to highest
organizedData <- t(apply(matrix(rawData2, ncol = 3, byrow = TRUE), 1, sort))
rename rows and columns of these triplicates as presented in the figure
theExtraction_names <- c("lower error", "bar", "upper error")
theBar_names <- c("exclosure", "water", "fertilizer", "control")
dimnames(organizedData) <- list(theBar_names, theExtraction_names)
organizedData

lower error bar upper error
exclosure 4.775438 5.466238 6.173633
water 7.572347 7.974277 8.376206
fertilizer 8.986066 9.276230 9.581994
control 4.678975 4.983923 5.273312

Meta-analysis with multiple effect sizes that share a common control

Typically an effect size quantified with a response ratio uses the means (𝑋𝑋), standard
deviations (𝑆𝑆𝑆𝑆), and sample sizes (𝑁𝑁) from single control (C) and treatment (T) groups.
However, some studies will compare multiple treatment groups to a single control.

Here we will replicate the meta-analysis example presented in Lajeunesse (2011; Ecology
92, 2049-2055) for modeling effect sizes that share a common control.

29

load metagear package
library(metagear)
get dataset from my website
dataSource <- "http://lajeunesse.myweb.usf.edu/metagear/Lajeunesse_2011_commonControl.csv"
theData <- read.csv(dataSource, header = TRUE)
calculate response ratios (RR) and add these effect sizes to the dataset
theData$RR <- log(theData$X_T/theData$X_C)
display effect sizes as reported by Lajeunesse (2011; page 2052, second paragraph)
round(theData$RR, 3)

[1] -0.598 0.182 0.718

These three RR effect sizes share a common control. The next step is to model the
covariances (the dependencies) among these effect sizes using the metagear's
covariance_commonControl() function. There will be a list of two objects outputted from
this function, the first will be the variance-covariance matrix that models the dependencies
among effect sizes, and the second is the effect size dataset that is aligned with the
structure of this matrix. Let's now compute and display the matrix.
estimate the sample variance-covariance (VCV) matrix that models the common control relation
ships among RR
V <- covariance_commonControl(theData,
 "commonControl_ID",
 "X_T", "SD_T", "N_T",
 "X_C", "SD_C", "N_C",
 metric = "RR")
display the VCV matrix with rounded variances and covariances
round(V[[1]], 3)

[,1] [,2] [,3]
[1,] 0.105 0.047 0.047
[2,] 0.047 0.087 0.047
[3,] 0.047 0.047 0.060

Note the off-diagonals of the matrix are non-zero; this structure models the shared
variance (covariance) among the three effect sizes due to the common control. The
equation for the common-control covariance between two respponse ratio effect sizes is:

𝑐𝑐𝑜𝑜𝑣𝑣(𝑅𝑅𝑅𝑅𝐴𝐴,𝐶𝐶 , 𝑅𝑅𝑅𝑅𝐵𝐵,𝐶𝐶) =
(𝑆𝑆𝑆𝑆𝐶𝐶)2

𝑁𝑁𝐶𝐶𝑋𝑋𝐶𝐶
2 .

Now let's use this matrix to model the dependent effect sizes in a meta-analysis. Here we
will conduct a simple fixed-effect meta-analysis as presented by Lajeunesse (2011) using
the metafor R package.

30

perform a random-effects meta-analysis on these effect sizes using the metafor R package
suppressWarnings(suppressMessages(library(metafor))) # remove all messages when loading packag
e
theCovarianceMatrix <- V[[1]]
theAlignedData <- V[[2]]
rma.mv(RR, # a simple model that only pools the 3 effect sizes
 V = theCovarianceMatrix, # inclusion of the sample VCV matrix
 data = theAlignedData, # the dataset with the effect sizes
 method = "FE", # "FE" = fixed effect
 digits = 4)

Multivariate Meta-Analysis Model (k = 3; method: FE)

Variance Components: none

Test for Heterogeneity:
Q(df = 2) = 25.8185, p-val < .0001

Model Results:

estimate se zval pval ci.lb ci.ub
0.4054 0.2356 1.7207 0.0853 -0.0564 0.8671 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The pooled effect size sharing a common control was 0.41 with a variance of 0.0556
(converting SE to variance with 0.23562).

References

Carmona, D., Lajeunesse, M.J. and Johnson, M.T.J. (2011) Plant traits that predict resistance
to herbivores. Functional Ecology 25: 358-367.

Kam, M., Cohen-Gross, S., Khokhlova, I.S., Degen, A.A. and Geffen, E. (2003) Average daily
metabolic rate, reproduction and energy allocation during lactation in the Sundevall
jird Meriones crassus. Functional Ecology 17: 496-503.

Kortum, P., and Acymyan, C.Z. 2013. How low can you go? Is the System Usability Scale
range restricted? Journal of Usability Studies 9: 14-24.

Lajeunesse, M.J. (2011) On the meta-analysis of response ratios for studies with correlated
and multi-group designs. Ecology 92: 2049-2055.

Lajeunesse, M.J. (2016) Facilitating systematic reviews, data extraction and meta-analysis
with the metagear package for R. Methods in Ecology and Evolution 7: 323-330.

31

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P., Clarke, M.,
Devereaux, P.J., Kleijnen, J., and Moher, D. (2009) The PRISMA statement for
reporting systematic reviews and meta-analyses of studies that evaluate health care
interventions: explanation and elaboration. PLoS Medicine 6: e1000100.

Pau, G., Fuchs, F., Sklyar, O., Boutros, M. and Huber, W. (2010). EBImage—an R package for
image processing with applications to cellular phenotypes. Bioinformatics 26: 979-
981.

	Introduction
	Acknowledgements
	How to cite?
	Installation and Dependencies
	Report a bug? Have comments or suggestions?

	Delegating reference screening effort to a team
	Screening abstracts of references
	Workflow example
	Downloading PDFs
	Scraping Web of Science for bibliographic data
	Generating PRISMA plots
	Generating different PRISMA plot layouts
	Notes on PRISMA plotting since metagear v. 0.1 and 0.2

	Automated extraction of data from scatterplots
	Example 1 | figure_scatterPlot() default settings
	Example 2 | tweaking defaults for image size
	Example 3 | more tweaking based on color, size, and empty points

	Automated extraction of data from bar plots
	Example 1 | figure_barPlot() default settings
	Example 2 | tweaking defaults for horizontal columns

	Meta-analysis with multiple effect sizes that share a common control
	References

