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Abstract
A central assumption in ecological immunology is that immune responses are costly, with costs

manifesting directly (e.g., increases in metabolic rate and increased amino acid usage) or as trade-

offs with other life processes (e.g., reduced growth and reproductive success). Across taxa, host

longevity, timingofmaturity, and reproductive effort affect theorganizationof immune systems. It

is reasonable, therefore, to expect that these and related factors should also affect immuneactiva-

tion costs. Specifically, species that spread their breeding efforts over a long lifetime should expe-

rience lower immune costs than those that mature and breed quickly and die comparatively early.

Likewise, bodymass should affect immune costs, as body size affects the extent towhich hosts are

exposed to parasites as well as how hosts can combat infections (via its effects onmetabolic rates

and other factors). Here, we used phylogenetic meta-regression to reveal that, in general, animals

incur costs of immune activation, but small species that are relatively long-lived incur the largest

costs. These patterns probably arise because of the relative need for defense when infection risk

is comparatively high and fitness can only be realized over a comparatively long period. However,

given the diversity of species considered here and the overall modest effects of bodymass and life

historyon immunecosts,muchmore research is necessarybefore generalizations are appropriate.

1 INTRODUCTION

Protection against infection often comes at a cost to hosts (Lochmiller

& Deerenberg, 2000). Once exposed to an infectious threat, costs of

immune activation can involve increases in resource use, such as ele-

vatedmetabolic rate or amino acid assimilation (Brace, Sheikali, &Mar-

tin, 2015; Lochmiller & Deerenberg, 2000), or as tradeoffs with life-

history traits such as growth or reproduction (Bonneaud et al., 2003).

Although hosts can sometimes mitigate these costs by increasing

resource intake (Ruiz, French,Demas,&Martins, 2010), in natural envi-

ronments, resources are typically limited and thus must be distributed

among competing physiological processes. A number of studies have

demonstrated that costs of immune activation are present, marked,

and variable among populations (Bonneaud et al., 2003; Cox & Cals-

beek, 2010; Lee, 2006; Martin et al., 2017). However, the large-scale,

evolutionary drivers of these observed costs remain under debate.

Exposing broad patterns of immune costs might refine and clar-

ify the processes driving variation in susceptibility and perhaps

even implicate species prone to serve as competent reservoirs (or

infection risk-diluters) within communities. Potential drivers of
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immune system costs among species probably include life-history

traits such as lifespan and time to reproductive maturity. Longer lived

and slower to mature organisms likely experience overall greater

exposure to parasites, and hence different trajectories of immune

ontogeny, than fast-developing, prolifically breeding species. Some

support from this expectation comes from the recurrent observation

that some long-lived species favor specific immune defenses over

nonspecific ones (Martin, Weil, & Nelson, 2007). The reasons for

this pattern are thought to be twofold. First, longer lived organisms

are more likely to encounter the same parasites multiple times dur-

ing their lives, making it beneficial to control infections via specific

defenses, which can be costly to develop (Ricklefs, 1992). Second, but

nonexclusively, by favoring specific defenses (withmemory), long-lived

organisms might avoid recurrent collateral damage (costs) associated

with nonspecific defenses (Ricklefs &Wikelski, 2002).

Body size might also influence immune costs experienced by

organisms. Indeed, many aspects of physiology (Gillooly & Allen, 2007;

Ricklefs & Wikelski, 2002; West, Brown, & Enquist, 1997) are influ-

enced by host body size including traits of immune systems. Immune

costs might also track body size. The surfaces of digestive and respi-

ratory tracts and skin, for instance, which are the most common sites

of parasite invasion, are larger in large than small organisms (Huang

et al., 2013; West et al., 1997; Wiegel & Perelson, 2004). Metabolic

rate (scaling coefficient of¾) and number of cells (scaling coefficient of

1) also increase with body mass (Lindstedt & Calder III, 1981; Savage

et al., 2004). Subsequently, large organisms should require more

immune surveillance and protection, and probably more resources to

provide protection, than small organisms.

Here, we investigated whether and how lifespan, time to repro-

ductive maturity, and body size affect costs of immunity in hosts. We

focused exclusively on functional costs of immunity such as changes

in body mass, physical performance, food intake, growth rate, egg

production, egg size, gonad size, breeding effort, survival probabil-

ity, recruitment success, and dispersal behavior when exposed to an

immune system stimulant (Bonneaud et al., 2003; Bonneaud, Mazuc,

Chastel, &Westerdahl, 2004; Cox &Calsbeek, 2010; Klasing &Korver,

1997; Laugero & Moberg, 2000). We excluded changes in physiologi-

cal traits (e.g., body temperature,metabolic rate, antibody production),

as these traits are difficult to link to fitness. Sometimes increases are

protective (e.g., fever, to a point), but sometimes decreases are pro-

tective (e.g., timely damping of inflammatory cytokine expression), and

such patterns could even vary among taxa. We also focused solely on

studies that used nonreplicating immune stimulants to induce immune

responses, and excluded studies using live pathogens because live par-

asites could themselves affect (the costs of) host responses. In total,

our analysis included 236 immune costs among 39 invertebrate and

vertebrate species with lifespans and times tomaturity spanning three

orders ofmagnitude (21 days to 40 years and 8 days to 5 years, respec-

tively), and body sizes spanning nine orders of magnitude (0.71 mg–

200 kg). We hypothesized that costs of immunity would be the small-

est in long-lived, long-developing, and/or small-bodied species (Tella,

Scheuerlein, & Ricklefs, 2002; Wiegel & Perelson, 2004), and we used

phylogenetic meta-analysis to test these hypotheses.

2 METHODS

2.1 Searchmethods and inclusion/exclusion criteria

Candidate studies were identified using Web of Science and Google

Scholar based on the search terms: cost* and immun*, trade* and

immun*, and fitness and immun*. Between November 2011 and

January 2012, and approximately 179 candidate studies published

between 1991 and 2010 identified with these search terms were

selected by screening paper titles and abstracts. Studieswere included

in the meta-analysis if (1) immune responses were induced with a non-

living pathogen or comparably immunogenic substance, (2) an unma-

nipulated or procedural (e.g., sham and saline) control group was used,

(3) the study organism was not a domesticated species or human (as

intentional selection or adaptation to captivity could have led to the

evolution of damped immune costs), and (4) measured costs were

functional (e.g., activity, food intake, growth rate, mass change, egg

production, egg size, gonad size, breeding effort, individual survival,

recruitment rate, and dispersal behavior). Studies that only reported

statistical model outcomes or marginal means were excluded because

effect sizes (see below) could not be calculated with such information.

In total, 46 research articlesmet our inclusion criteria (see Supplemen-

tary Table S1).

From each research article, we extracted (1) the study species and

its taxonomic affiliation, (2) the type of control (i.e., unmanipulated and

procedural controls, including sham-injected and saline-injected indi-

viduals), and (3) the stimulant used to activate the immune system (e.g.,

LPS, vaccines, nylon thread). These stimulants were grouped depend-

ing on how they activated the immune system (i.e., innate or adap-

tive), or grouped as “mixed” if they were difficult to assign (e.g., vaccine

treatments with multiple antigens and/or adjuvants). When possible,

we also extracted average body mass, lifespan, and time to maturity

for each study species from these papers. However, species character-

istics were often not reported, so data were supplemented using other

resources (Supplementary Table S2).

2.2 Outcome extractions and experimental design

modeling

Study outcomes were quantified as the standardized mean difference

between a treatment (T) and control (C) group using effect sizes based

on Hedges’ d (Hedges, 1981). Negative values for Hedges’ d thus rep-

resent costs of immune activation because they reflect a decline in per-

formance or fitness in the treated group relative to the control. To cal-

culate effect sizes, we extracted the means, standard deviations (SD),

and sample sizes (N) of each group, and combined these study parame-

ters into an effect size (d) using:

d =
X̄T − X̄C√

(NT−1)SD2
T
+(NC−1)SD2

C

NT+NC
−2

[
1 − 3

4(NT + NC) − 9

]
,

which has variance

var(d) =
NT + NC

NTNC
+ d2

2(NT + NC)
.
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Whenpossible, these study parameterswere extracted from tables,

text, and supplemental materials, or extrapolated from plots manually.

When standard errors were reported, they were converted to stan-

dard deviations. Several studies reported relevant outcomes based

on counts or proportions (e.g., individuals surviving with or without

immune activation). The outcomes of these studies were first quanti-

fiedwithanodds ratio effect size and thenconverted toHedges’dusing

the equation reported in LAJEUNESSE, KORICHEVA, GUREVITCH,

and MENGERSEN (2013); less than 6% of effect sizes were derived

from these conversions. Several outcomeswere often extracted froma

single study. This approach canbe a problem formeta-analysis because

multiple extractions derived from the same experimental design will

share study parameters that are statistically dependent, which can

increase type II error (Lajeunesse, 2011). Inourmeta-analysis,wemod-

eled several forms of experimental dependencies to improve our vari-

ance estimates and hypothesis tests. For example, many studies used

a design that compared several types of controls to a single treat-

ment group. Typically, one control group consisted of unmanipulated

(U) individuals, and a second group of individuals underwent a proce-

dural treatment (P) intended to quantify administration effects of the

stimulant (e.g., a sham or saline injection to control for injury effects).

However, effect sizes derived from this design share a common treat-

ment group and therefore do not represent independent study out-

comes. We subsequently modeled the covariance between these two

effects using a modified version of Gleser and Olkin’s (Olkin & Gleser,

2009) covariance (cov) equation for Hedges’ d effect sizes with a com-

mon control cov(dC-U, dC-P) = (1 + 0.5dC-UdC-P)/(NT + NC-U + NC-P),

where both dC-U and dC-P used the pooled standard deviation:√
(NT − 1)SD2

T + (NC−U − 1)SD2
C−U + (NC−P − 1)SD2

C−P
NT + NC−U + NC−P − 3

When studies reported multiple outcomes as well as the corre-

lation between these outcomes (e.g., outcomes based on two vac-

cines), we modeled their dependencies using the covariance equation

betweenmultivariate d for unequal sample sizes reported in Robinson,

Lajeunesse, and Forbes (2012). Finally, when outcomes were reported

as a time series (either pre- and post-effect designs, or through

repeated measurements through time), we modeled dependencies by

first estimating phi (an optimized autocorrelation value for the white

noise in a weighted regression model using the nlme R package; Pin-

heiro, Bates, Debroy, Sarkar, & Team, 2009) using a simple ARMA (p, q)

model assuming a first-order autoregressive structure (p = 1) and no

moving average correlations (q = 1). When phi could not be estimated,

we assumed phi had a small autoregressive structure between time

series of 0.25. Phis were then converted into a variance/covariance

matrix following Trikalinos andOlkin (2012).

2.3 Traditional and phylogenetic analyses

We analyzed extracted effect sizes using multifactor mixed-model

meta-analyses (for categorical predictors) and meta-regressions (for

continuous predictors). All regression models assumed a maximum

likelihood based between-study variance estimate (𝜏2) required for

random-effects meta-analysis and included a block-diagonal sampling

variance–covariance matrix. This approach provides the weights for

each effect size used in the weighted regressions with the variances

of d on main diagonal and the covariances used to model depen-

dencies arising from various experimental designs (i.e., multiple con-

trol groups). The regression equations used to perform meta-analyses

require that each variance–covariance matrix used to model depen-

dencies be symmetric and positive definite; therefore when necessary,

we used Higham’s method (Higham, 2002).

Phylogenetic analyses included two additional random effects: a

random factor designating themultiple effect sizes derived from single

species and a second, unstructured random effect matrix modeling the

shared evolutionary history (i.e., phylogenetic correlations) of species

(Lajeunesse, 2009). Our phylogenetic correlation matrix was derived

from a composite phylogeny assuming a Brownian motion model of

phenotypic evolution (Rohlf, 2001) using the vcv() function of the ape

package in R (Paradis, Claude, & Strimmer, 2004). The taxonomic com-

position of this ultrametric tree was broad and included 39 species

from three invertebrate (Insecta, Gastropoda, and Bivalvia) and three

vertebrate classes (Aves, Mammalia, and Reptilia). The deep diver-

gence times and topology were based on Hedges, Dudley, and Kumar

(2006) for classes, Meredith et al., 2011 for mammals, Jetz, Thomas,

Joy, Hartmann, and Mooers (2012) for birds, and Trautwein, Wieg-

mann, Beutel, Kjer, and Yeates (2012) for insects. In cases when diver-

gence timeswere unavailable, we arbitrarily scaled branch-lengths dis-

tances using Grafen’s method using 𝜌 to the power of 1.0 to model

divergence times emerging from a Brownian motion model of evolu-

tion. Finally, all analyses were performed using the rma.mv() function

from themetaforpackage inR (Viechtbauer, 2010) assuming thenlminb

optimizer. Pseudo-R2 (proportional reduction in the total variance

explained) for each model was estimated as follows: R2 = (Σ𝜏2base –

Σ𝜏2predictors)/Σ𝜏2base, where 𝜏2base are all the estimated random effect

variances fromamodelwithout predictors (basemodel) and 𝜏2predictors
are the variances of a model including predictors. Between-group Q-

testswereusedasomnibus tests for comparingdifferences amongpre-

dictor categories (Hedges & Olkin, 2014) and continuous predictors

(e.g., mass) were log10 transformed prior to analyses.

3 RESULTS

3.1 Is immune activation costly?

Overall, we detected significant functional costs of immune activation

(k = 236 effect sizes; conventional grand mean d = –0.34, 95% CI: –

0.47 to –0.21; phylogenetic grand mean d = –0.33, 95% CI: –0.57 to

–0.09; Fig. 1); the mean effect size between immune challenged and

unchallenged/control organisms was negative, revealing that immune

activation tended to reduce performance relative to controls. Varia-

tion in these costswas also substantially beyond that predictedby sam-

pling error (fixed-effect Qwithin = 1,253.5, df = 235, P < 0.001); thus,

there is little evidence for a file drawer problem for null results. The file

drawer problem refers to the possibility that many null results might

not have been published, often because of concerns about the lack

of statistical power to be confident that effects are genuinely absent
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F IGURE 1 Immune activation is costly among animals; all Hedges’ d
effects were negative. Pooled effects are based on conventional (blue)
and phylogenetic (orange) random-effects meta-analyses; the number
of pooled effect sizes is provided in parentheses. Among all taxa, the
conventional meta-analysis model was the better fit [Color figure can
be viewed at wileyonlinelibrary.com]

(Rosenberg, 2005). Also, although the type of immune challenge and

the type of costs were considered (e.g., lipopolysaccharide vs. nonpy-

rogens), these sources of variation were negligible when the phyloge-

netic history of taxa wasmodeled.

3.2 What factors predict immune costs?

Contrary to our predictions, neither lifespan, nor time to maturity, nor

body mass predicted costs of immune activation when modeled alone

(lifespan: conventional 𝛽 = –0.02, SE= 0.05, 95%CI: –0.13 to 0.08, P=
0.64; phylogenetic 𝛽 = –0.03, SE = 0.07, 95% CI: –0.18 to 0.11, P =
0.64; time tomaturity: conventional 𝛽 = 0.05, SE= 0.05, 95%CI: –0.04

to 0.16, P = 0.29; phylogenetic 𝛽 = 0.03, SE = 0.08, 95% CI: –0.11 to

0.19, P = 0.65; body mass: conventional 𝛽 = 0.01, SE = 0.02, 95% CI: –

0.03 to 0.05, P = 0.58; phylogenetic 𝛽 = 0.03, SE = 0.04, 95% CI: –0.04

to 0.11, P = 0.40). However, when lifespan and body mass were mod-

eled simultaneously, longer lived animals had larger immune costs than

short-lived ones (Fig. 2) in conventional (𝛽 = –0.23, SE = 0.11, 95% CI:

–0.42 to –0.03, P = 0.02) but not phylogenetic models (𝛽 = –0.23, SE =
0.13, 95%CI: –0.49 to 0.03, P= 0.08). Bodymass was a significant pre-

dictor of immune costs in both conventional (𝛽 = 0.1, SE = 0.04, 95%

CI: 0.02–0.18, P = 0.01) and phylogenetic meta-regressions (𝛽 = 0.11,

SE = 0.05, 95% CI: <0.001–0.21, P = 0.05), such that smaller animals

experienced greater immune costs than larger ones (Fig. 3). The phylo-

genetically informedmodelwas the better-fit compared to the conven-

tional model (LR c2 = 0.22, P = 0.318). In a separate meta-regression,

we found no significant interaction between lifespan and body mass

in either conventional (𝛽 = –0.004, SE = 0.01, 95% CI: –0.03 to 0.02,

F IGURE 2 Lifespan (mean days to death) was a significant posi-
tive predictor of immune activation cost (when body mass effects
were controlled); longer-lived animals experience higher immune
costs. Note the inverted y-axis to convey better increasing costs with
increasing lifespan. Random-effects meta-regression lines are based
on conventional (blue) and phylogenetically informed (orange) models
derived fromameta-regression that simultaneouslymodeledmass and
lifespan as cost predictors (nonsignificant interceptwas not included in
this model) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Body mass (grams) corrected for lifespan is a significant
predictor of immune cost such that costs are largest for the small-
est animals. Higher costs are shown as more negative, indicating a
decrease in function, performance, or fitness as a result of immune
activation. Random-effects meta-regression lines are based on con-
ventional (blue) and phylogenetic (orange) models, and are derived
from a meta-regression that simultaneously modeled mass and lifes-
pan as cost predictors (nonsignificant interceptwas not included in this
model) [Color figure can be viewed at wileyonlinelibrary.com]
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P = 0.70) or phylogenetic analyses (𝛽 = –0.004, SE = 0.02, 95% CI: –

0.04 to0.03,P=0.79), sono interaction termwas included in additional

modeling efforts.

When body mass was included in a meta-regression model testing

whether time to maturity predicted costs of immune activation,

neither time to maturity (conventional 𝛽 = 0.03, SE = 0.08, 95% CI:

–0.13 to 0.19, P = 0.74; phylogenetic 𝛽 = –0.04, SE = 0.13, 95% CI:

–0.29 to 0.22, P = 0.77) nor body mass (conventional 𝛽 = 0.02, SE =
0.03, 95% CI: –0.05 to 0.08, P = 0.62; phylogenetic 𝛽 = 0.05, SE =
0.06, 95% CI: –0.05 to 0.16, P = 0.35) was predictive. The interaction

between time to maturity and body mass was nonsignificant when

tested in a separate model (conventional 𝛽 = 0.01, SE = 0.01, 95%

CI: –0.01 to 0.03, P = 0.59; phylogenetic 𝛽 = 0.003, SE = 0.02, 95%

CI: –0.03 to 0.04, P = 0.84), so it was excluded. The conventional

meta-analysis model fit the data better than the phylogenetic model

(among all animals: LR c2 = 10.78, P< 0.001; among taxonomic groups

of vertebrates and invertebrates: LR c2 = 7.99, P < 0.001; and among

taxonomic classes: LR c2 = 4.96, P< 0.001).

4 DISCUSSION

Ourphylogeneticmeta-regression supported a central tenet of ecolog-

ical immunology—immune activities impart functional costs to hosts

(Bonneaud et al., 2003; Bowers, Bowden, Sakaluk, & Thompson, 2015).

Contrary to our predictions, though, costs of immune activation were

not strongly affected by lifespan, time to maturity, or body mass. Only

when two traits weremodeled together, therewas some evidence that

costs were related to these traits. In one case, small yet long-lived

hosts tended to pay the largest costs of immune activation. In the other

case, time to maturity did not significantly predict immune costs alone

or when modeled with body mass. Moreover, there was no support

for interactions between body mass and lifespan or time to maturity

among taxa. In general and not surprisingly because of the distinctive-

ness of the immune systems of studied species, there was evidence

for an influence of phylogeny on immune costs in multiple models. At

first consideration, this outcome calls into question the existence of

any influence of lifespan on immune costs independent of evolutionary

history (Fig. 2). However, the pattern involving body mass, for a given

lifespan, appears robust, as body mass remained a significant predic-

tor in both corrected and uncorrected models. By contrast, phylogeny

added little to the model for time to maturity and body mass as pre-

dictors of immune costs; there, the conventional model received com-

parable support to the evolutionarily informed one. Below, we discuss

the implications of our results as well as promising avenues for future

work.

4.1 Bodymass

Functional costs of an immune responsewere largest in small yet long-

lived hosts. However, effects of body mass were modest at best (slope

(𝛽) ∼0.11 ± 0.05 in both corrected and uncorrected models). In nei-

ther model did the confidence interval of body mass include zero, so

although body mass effects were small, they were detectable, which

is especially compelling given the very diverse group of organisms we

considered. Indeed, our ability to detect an influence of body mass

on immune costs among such distinct species warrants some discus-

sion. One possible explanation for the pattern despite the immunolog-

ical diversity inherent to the group is that all animals, once exposed

to a parasite, tend to use nonspecific immune responses as a first line

of defense. These responses are among the most resource-intensive

and frequently result in tradeoffs with other physiological systems

(Lochmiller & Deerenberg, 2000). In small animals, which already

expend more energy per gram and experience more oxidative damage

than largeorganisms (Speakman, 2005), theadditional energy required

to initiate an immune response and the resultant increase in oxida-

tive damage may affect allocation of resources to fitness and perfor-

mance severely. In other words, the higher costs we observed in small

organismsmight largely be amanifestation of a disproportionallymore

activemetabolism in these species.

Another nonexclusive possibility involves risk of infection, which

might also change with body size. Although larger animals have more

total surface area at risk to parasite exposure (Wiegel & Perelson,

2004), the greater tissue volume of large hosts might act as a physi-

cally larger barrier for parasites to overcome. If so, parasite exposure

in a small animal may have a greater potential for successful infection.

Infection riskmight be further exacerbated in small organisms because

they have less cellular diversity; large organisms (especially across this

scale of taxonomic diversity) will have more cell types than small ones.

Less cell diversity could mean that invading parasites might be more

likely to find a viable home; large hosts might thus experience some

protection from infection just because of the relative inhospitability

of their tissues. If this prediction holds true, the value of a single cell

would much greater to a small than large host (particularly long-lived

ones). Subsequently, high immune costs in small hosts might represent

the need to protect individual integrity because bacterial/viral prolif-

eration or macroparasite invasion might be more apt to subsume a

greater proportionof thebodymass compared to largeorganisms. Risk

of infection, and damage from infection, could be further amplified by

the higher per cell metabolic rate of small hosts, which would poten-

tiate enemy replication in/on host tissues. Ultimately, it may be more

beneficial for small animals to cope with the costs of a strong immune

response than risk a potentially lethal infection (Siva-Jothy, Moret, &

Rolff, 2005).

On the other hand, surveillance for parasites is a much greater

challenge in large than small organisms. There are simply more and

more diverse sites to hide in a large organism, and the vascula-

ture is by and large comparable in efficacy among species. One way

large hosts might circumvent this constraint and thus incur smaller

induced immune costs could be via the assembly of robust consti-

tutive defenses. We expect that strong constitutive defenses will be

unviable for small-bodied organisms; their body sizes cannot support

the storage of resources or the transport of robust barriers to pre-

vent infection. Large-bodiedorganisms, on theother hand, could invest

heavily in the development of enduring barriers to infection. There

is some evidence that large-bodied animals have more robust con-

stitutive immune defenses than small-bodied species. However, there

is other evidence that indicates scale-invariance for some immune
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defenses (or even robust induced (inflammatorydefenses)) in large ani-

mals. These opposing or absent patterns between immunity and body

mass highlight the need for additional data to help explain the patterns

we found.

Given the complexities inherent to the immune systems and

the evolutionary ecology of host–parasite interactions, we ardently

encourage future study of body mass relationships with immune costs

and immune systems in general. Indeed, we cannot rule out taxonomic

bias here as an influence on our outcomes. We used all available lit-

erature at the time and took the unprecented approach (in terms of

its diversity) to compare immune costs among very diverse taxa. Still,

many of the small animals we considered lack adaptive immunity. We

thus cannot concludewith confidence that the associations found here

arose because insects comprise many of the small bodied species and

lack an adaptive immune system, which partly evolved to ameliorate

the costs of repeated parasite exposure (Rolff, 2007). Moreover, in

these animals that possess open circulatory systems, the rapidity of

an immune response will impact the movement of parasites and their

antigens throughout the body cavity (Siva-Jothy et al., 2005). In ver-

tebrates, the vasculature and themolecules that coordinate themove-

mentsof defenses around thebodyaremore sophisticated, not tomen-

tion integrated with the advantages of the adaptive immune system

(Medzhitov& Janeway, 1998).We cannot rule out these issues as influ-

ential to our results.

Critically too, all of the above propositions for body mass effects

on immune costs must be considered in light of the added influence

of lifespan we detected here. Longer lifespan amplified the effects of

small size on immune costs, whereas short lifespan ameliorated them.

This complex pattern probably represents the consequence of strong

selection for high-induced immune costs for small organisms evolved

to live long lives. If (as argued above) investment in robust constitu-

tive defenses is not an option for small organisms, small, long-lived

organisms might have no recourse but to respond aggressively when

exposed to an infectious threat. The mandate to live a long time might

require a costly immune response with every exposure; otherwise, the

host in question would never have the chance to gain fitness. Alterna-

tively, small, short-lived species that haveevolved short lifespansmight

be selected to avoid immune costs when at all possible. When such

host species become infected, the most viable strategy might involve

terminal investments (Bonneaud et al., 2004; Bowers et al., 2015) or

the like. Of course, short-lived species would also have shorter gen-

eration times than long-lived ones, regardless of their size. This evo-

lutionary advantage could have enabled short-lived, reproductively

prolific species to evolve cost-compensatory mechanisms (particularly

against collateral damage from immune responses), somethingunavail-

able to unrelated long-lived hosts. All of these possibilities require

future investigation; as yet and surprisingly, we know very little about

how body size affects the architecture and economics of immune sys-

tems.

4.2 Life-history effects

There was surprisingly little evidence for independent effects of

lifespan and time to maturity on immune activation costs. The only

statistically significant results involved lifespan in conjunction with

body size. However, in the better-supported phylogenetic model, lifes-

pan effects were nonsignificant, so even this influence of life history

was modestly supported. There are several possible, but nonexclusive,

explanations of the absence of strong patterns between life-history

traits and immune costs. The most obvious is that the two life-history

traits we evaluated do not capture well the life-history differences

among species that affect exposure to parasites and thus the rela-

tive fitness consequences parasites have for hosts. We chose lifespan

and time to maturity because of prior support for their influences on

immune systems in the literature, but also because they were among

the few traits for which data were available and conducive to the

breadth of host species we could compare. Other traits, such as total

lifetime reproductive effort, might be more informative. However, we

were unable to obtain such information, and even if such information

could be attained, species in this data set might be so unique that com-

parisons of life-history traits might be difficult to execute effectively.

Indeed, another possible explanation for the absence of strong life-

history effects on immune costs might be the inclusion of so many

diverse species. In an effort to identify drivers of broad patterns of

immune variation, we chose to conduct one analysis on all available

data. This approachmight have obscured compelling and stronger pat-

terns at finer levels of taxonomy. We are reticent to reexamine our

data, though, because for most families/genera we have too few data.

Only for birds, mammals, and insects do we have large sample sizes.

Instead of conducting such additional meta-regressions, we encour-

age new efforts to describe immune costs in these and other species.

Then, more nuanced study of life history (and body mass) might reveal

stronger andmore obvious effects on immune costs.

5 CONCLUSION

Altogether, our meta-analysis revealed appreciable costs of immune

activation among diverse animals, but effects of body mass were mod-

est and effects of life history were (mostly) absent. What evidence

of mass and life history we found suggested that small animals, dis-

proportionately long-lived for their size, experience the largest costs

of immune activation. However, given the diversity of species studied

here (physiologically as well as evolutionarily), we are reticent to dwell

on the implications of these results for disease risk or host–parasite

evolution.We are intrigued thatwewere able, at all, to detect relation-

ships between body mass and immune costs when the species studied

have such distinct immune systems, parasite communities, and ecolo-

gies. Given the manifestation of a relationship between body mass,

lifespan, and immune costs, it would be useful and probably insightful

to continue investigations such as ours, either in the form of additional

meta-analyses of more direct efforts to quantify and compare immune

costs among species.
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Supplementary Information 575 

Supplementary Table 1: Studies included in the meta-analysis that met our inclusion criteria.  Studies 576 
must have included manipulations using an immune stimulant that did not include live infections; treated 577 
animals must have been compared to a control group that was either unmanipulated or procedural (e.g., 578 
sham, saline); reported study outcomes that measured a fitness, performance, or other functional response 579 
(e.g., activity, food intake, growth rate, mass change, egg production, egg size, gonad size, breeding 580 
effort, individual survival, recruitment rate, dispersal behavior). 581 

Author Study year Study species Species class 
Adelman et al. (48) 2010 Melospiza melodia 

fallax, Melospiza 
melodia morphna 

Aves 

Ahmed et al. (49) 2002 Anopheles gambiae Insecta 
Armitage et al. (50) 2003 Tenebrio molitor Insecta 
Ashley et al. (51) 2009 Zonotrichia leucophrys 

gambelii 
Aves 

Barribeau et al. (52) 2010 Acyrthosiphon pisum Insecta 
Bascunan-Garcia et al. 
(53) 

2010 Acheta domesticus Insecta 

Bertrand et al. (54) 2006 Taeniopygia guttata Aves 
Biard et al. (55) 2009 Turdus merula Aves 
Bonneaud et al. (19) 2004 Passer domesticus Aves 
Burness et al. (56) 2010 Taeniopygia guttata Aves 
Cai et al. (57) 2009 Lasiopodomys brandtii Mammalia 
Costantini & Dell’Omo 
(58) 

2006 Falco tinnunculus Aves 

Derting & Virk (59) 2005 Peromyscus leucopus Mammalia 
Dreiss et al. (60) 2008 Hirundo rustica Aves 
Ekblom et al. (61) 2005 Gallinago media Aves 
Eraud et al. (62) 2005 Streptopelia decaocto Aves 
Eraud et al. (63) 2009 Streptopelia decaocto Aves 
Fair & Myers (64) 2002 Sialia mexicana Aves 
Février et al. (65) 2009 Cornu aspersum 

aspersa; Cornu 
aspersum maxima 

Gastropoda 

Freitak (66) 2003 Pieris brassicae Insecta 
Gautier et al. (67) 2008 Taeniopygia guttata Aves 
Grindstaff (68) 2008 Coturnix japonica Aves 
Hôrak et al. (69) 2006 Carduelis chloris Aves 
Jacot et al. (70) 2004 Gryllus campestris Insecta 
Jacot et al. (71) 2005 Gryllus campestris Insecta 
Kati & Hardie (72) 2010 Aphis fabae Insecta 
Laugero & Moberg (20) 2000 Mus musculus Mammalia 
Laugero & Moberg (73) 2000 Mus musculus Mammalia 
Li et al. (74) 2009 Crassostrea gigas Bivalvia 
López  et al. (75) 2009 Podarcis hispanica Reptilia 
Mallon et al. (76) 2003 Apis mellifera Insecta 
Martin (77) 2005 Passer domesticus Aves 
Meylan et al. (78) 2010 Zootoca vivipara Reptilia 
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Moret & Schmid-
Hempel (79) 

2004 Bombus terrestris Insecta 

Munoz et al. (80) 2010 Zonotrichia leucophrys 
oriantha 

Aves 

Owen-Ashley et al. (81) 2008 Zonotrichia leucophrys 
pugetensis; Zonotrichia 
leucophrys gambelii 

Aves 

Råberg et al. (82) 2000 Parus caeruleus Aves 
Reaney & Knell (83) 2010 Euoniticellus 

intermedius 
Insecta 

Sijben et al. (84) 1998 Sus scrofa Mammalia 
Svensson et al. (85) 1998 Parus caeruleus Aves 
Williams et al. (86) 1999 Sturnus vulgaris Aves 

 582 

  583 
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Supplementary Table 2: Sources of mass and life history information (average life expectancy, average 584 
time to maturity) if the information was not available in the source paper.   585 

Species Information source  
Acyrthosiphon 
pisum 

Sakurai, et al. 2005 (87) 
Eastop 1971 (88) 

Anopheles 
gambiae 

http://www.cdc.gov 
 

Aphis fabae Banks, et al. 1964 (89) 
Apis mellifera Ellis & Delaplane 2009 (90) 

http://animaldiversity.org/ 
Bombus 
terrestris 

http://www.bumblebee.org 
 

Carduelis 
chloris 

http://eol.org  

Coturnix 
japonica 

http://animaldiversity.org/ 
 

Crassostrea 
gigas 

http://www.fao.org 
Pauley, et al. 1988 (91) 

Falco 
tinnunculus 

http://animaldiversity.org/ 

Gallinago 
media 

del Hoyo, et al. 1991 (92) 

Gryllus 
campestris 

Holzer, et al. 2003 (93) 

Hirundo rustica http://animaldiversity.org/  
Lasiopodomys 
brandtii 

http://genomics.senescence.info/species 
 

Melospiza 
melodia fallax 

http://animaldiversity.org/ 
 

Melospiza 
melodia 
morphna 

Owen-Ashley 2006 (94) 
http://animaldiversity.org/  

Parus caeruleus Dhondt 1989 (95) 
http://eol.org 

Passer 
domesticus 

http://genomics.senescence.info/species 
http://animaldiversity.org 

Peromyscus 
leucopus 

http://animaldiversity.org/ 

Podarcis 
hispanica 

Gabirot, et al. 2013 (96) 

Sialia mexicana http://animaldiversity.org/ 
Streptopelia 
decaocto 

http://eol.org  

Sturnus vulgaris http://animaldiversity.org/ 
Linz, et al. 2007 (97) 

Sus scrofa http://animaldiversity.org/  
Taeniopygia 
guttata 

http://animaldiversity.org/ 

Turdus merula http://eol.org 
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Zonotrichia 
leucophrys 
gambeii 

Morton & Pereyra  1987 (98) 
 

Zonotrichia 
leucophrys 
pugetensis 

http://eol.org 
 

Zootoca 
vivipara 

http://animaldiversity.org/  

 586 


