Appendix A.  Supplementary methods, results, and discussion exploring how characteristics of phylogenies influence model fit of phylogenetic compared to traditional meta-analyses.  
Introduction
Despite the many compelling reasons to incorporate phylogenetic information into meta-analyses that involve multiple species (see Introduction of main text), investigators often use model comparison criteria such as Akaike’s Information Criterion (AIC) to assess whether phylogenetic or traditional meta-analyses fit their data better (e.g., Munguía-Rosas et al. 2011).  However, there has been no comprehensive quantitative review of model fit for traditional versus phylogenetic meta-analyses or exploration of what characteristics of phylogenetic trees may explain differences in model fit.  
Here, we construct phylogenies for, and re-analyse datasets from, previously published meta-analytic studies, comparing model fit of traditional and phylogenetic meta-analyses within individual datasets and among datasets.  Specifically, we ask two questions: (1) How does accounting for phylogenetic non-independence affect model fit of individual meta-analyses?; and across datasets (2) What characteristics of phylogenies explain variation in the relative fit of phylogenetic meta-analyses? 
Methods

Comparison of model fit for traditional and phylogenetic meta-analyses within datasets.  
We performed traditional and phylogenetic meta-analyses for each of the 30 selected datasets.  We present results for both fixed- and random-effects models because neither is the clear method of choice (i.e., both have caveats associated with their use; see the main text for additional details).  Both traditional and phylogenetic meta-analyses were performed with phyloMeta v.1.2 (Lajeunesse 2009, 2011).

For each meta-analysis, we assessed model fit of traditional versus and phylogenetic meta-analyses using Akaike’s Information Criterion (AIC).  One common method for calculating AIC when residuals are normally distributed uses the residual sums of squares to assess model fit (Burnham & Anderson 2002).  For meta-analyses, the homogeneity statistic Q  gives a weighted measure of within-group variation, analogous to residual sums of squares in ANOVA (Hedges & Olkin 1985).  Thus, 
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where k = sample size (here, the number of species) and m = the number of parameters (Lajeunesse et al. in press).  Within this framework, accounting for phylogeny can increase Q substantially because Q depends in part on the variance-covariance matrix (for details regarding how Q is calculated, see eq. 12 in Lajeunesse 2009).  In traditional meta-analyses, the variance-covariance matrix contains effect size variances on the diagonal and zeroes on the off-diagonals (yielding a weighted least squares solution), but in phylogenetic meta-analyses it also contains all pairwise phylogenetic covariances on the off-diagonals.  Preliminary analyses suggested that using Q to calculate AIC for phylogenetic meta-analyses may be problematic because the number of pairwise distances in the variance-covariance matrix increases exponentially with sample size, leading to greatly increased total variation and thus inherently poor estimates of model fit (high AIC values) as the number of species increases.  Therefore, we also used an alternative method for calculating AIC to assess model fit,
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where logL is the maximized log-likelihood for a given meta-analytic statistical model (Lajeunesse 2009).  By convention, incorporating phylogeny into the meta-analytic model adds a single parameter relative to the traditional meta-analytic model.  Thus, differences in Q-based versus ML-based AIC reflect differences in model fit and not in the model-complexity penalty.  In all cases, we converted AIC to the small-sample bias-corrected AICc by adding the value (2mk / (k – m – 1)) (Johnson & Schindler 2009).

For each study, we then calculated the Akaike weight  (Burnham & Anderson 2002; Johnson & Omland 2004) for a traditional (AWt) versus a phylogenetic (AWp) meta-analysis to quantify relative model fit.  Akaike weights are interpreted as the probability of model i being the best model for the observed data given the set of models examined, where ΣAWi = 1.  Our range of values for AWp was strongly leptokurtic, thus in all subsequent analyses to assess relative model fit we focused on log10(AWp) as the response of interest.  

What characteristics of phylogenies and/or datasets explain variation in the relative fit of phylogenetic meta-analysis models?  
To assess factors that may influence the likelihood of a phylogenetic meta-analysis providing a better (or worse) fit to the data relative to traditional meta-analysis, we conducted analyses on AWp that were similar to the meta-meta-analysis on Hedges' d (as described in the main text).  However, because there is no metric of variation associated with Akaike weights, two subtle differences separate these analyses from those meta-meta-analyses.  First, we assessed variation in AWp using unweighted linear models rather than weighted models, and second, we used F-statistics rather than Z-statistics as our criteria for predictor elimination.  
Results

How does accounting for phylogenetic non-independence affect model fit of individual meta-analyses?  
For both fixed- and random-effects analyses, traditional meta-analytic models usually fit datasets better than did phylogenetic models, although this difference was less pronounced for ML-based AICc than it was for Q-based AICc (Table A1).  Based on AICc calculated from Q-statistics, traditional models always fit better than phylogenetic models (for both random and fixed effects; see Table A1).  However, using AICc calculated from maximum likelihood, phylogenetic models fit as well as or better than traditional models in at least some cases.  For fixed effects, phylogenetic models fit better in one dataset and equally well in four, and for random effects they fit better in three datasets and equally well in four (Table A1).  
What characteristics of phylogenies explain variation in the relative fit of phylogenetic meta-analysis models?  
The amount of explained variation in Akaike weights for phylogenetic meta-analyses (AWp) depended greatly on whether we conducted fixed- versus random-effects analyses and on whether AICc was based on residual sums of squares (Q) or maximum likelihood (ML).  Explained variation was much higher for fixed- versus random-effects models, and this distinction was particularly exaggerated for Q-based AICc (r2 range = 0.77-0.85 and 0.30-0.53 for fixed- and random-effects models using Q-based AICc, respectively; range = 0.39-0.51 and 0.05-0.19 for fixed- and random-effects models using ML-based AICc, respectively).  

For Q-based AICc using fixed-effects analyses, the relative fit of phylogenetic models (AWp) decreased sharply in response to increasing phylogeny size (Table A2; Fig. A1); to a lesser extent, it also decreased when internal nodes were distributed nearer to the tips of the phylogenies (increases in γ; Table A2, Fig. A1).  In our dataset, phylogeny size and γ were positively correlated, but this relationship was fairly weak (r = 0.37, P = 0.046).  In contrast to results from Q-based AICc, relative model fit was independent of both tree size and γ for fixed-effects models using ML-based AICc.  For ML-based AWp, the relative fit of fixed-effects phylogenetic models was only related to phylogeny age, with significantly poorer fits as phylogeny age increased; this result may reflect the presence of relatively long branches and thus extremely small phylogenetic covariances in many of our oldest phylogenies (see below).

Regardless of which method was used to calculate AICc and AWp (Q vs. ML), incorporating random effects eliminated the dependence of phylogenetic relative model fit on phylogeny size, γ and phylogeny age.  For Q-based AICc, phylogenetic relative model fit decreased with increasingly unbalanced phylogenies (larger Ic) and phylogenies that were more poorly resolved (those with many polytomies; Table A2).  For ML-based AICc, none of our predictors explained significant variation in relative phylogenetic model fit.  

Discussion

This study reports the first assessment of factors influencing relative model fit for traditional versus phylogenetic meta-analyses using empirical data that addresses a wide range of ecological and evolutionary topics.  We found that traditional meta-analytic models often fit better (had lower AICc) than phylogenetic models.  However, when model fit was assessed using ML-based AICc (the approach we advocate, see below), the relative fit of phylogenetic models often improved.  Our analyses highlight associations between relative model fit of phylogenetic meta-analyses and phylogeny size, phylogeny age and the distribution of nodes in time.  Lastly, we found that our predictors explained relatively little variation in relative model fit for random- versus fixed-effects models; we discuss some implications of this distinction below.
When do phylogenetic meta-analytic models fit better than traditional ones?


Model fit for fixed-effect phylogenetic meta-analyses using the Q-based approach, which has been advocated by Lajeunesse et al. (in press), is highly dependent on phylogeny size.  Calculating AIC from residual sums of squares to assess model fit is common (Burnham & Anderson 2002), and because Q is analogous to residual sums of squares for meta-analytic models (Hedges & Olkin 1985), a simple substitution seems adequate.  However, Q is derived from a matrix of all pairwise phylogenetic covariances, thus total variation increases exponentially as species are added to a phylogeny.  Therefore, for a phylogenetic meta-analysis with even a moderate number of species to fit a dataset better than a traditional meta-analysis, it would have to explain a vastly increased amount of variation.  In contrast, because the log-likelihood does not scale directly with phylogeny size, this method for calculating AIC is much less dependent on the number of species in the dataset.  Lajeunesse (2009) used ML-based AIC for model comparisons when introducing the phylogenetic meta-analysis method, but the ML approach was not explicitly compared to the Q-based approach at that time.  Our data strongly suggest that Q-based AIC be abandoned in favor of ML-based AIC for comparing phylogenetic to traditional meta-analytic models.  Therefore, in the remainder of the Discussion, we will address predictors of relative model fit using only ML-based AIC.    


Phylogeny age was our only significant predictor of ML-based relative model fit for fixed-effects phylogenetic models, with decreasing AWp as phylogeny age (i.e. age of the root node) increased.  Prior to a phylogenetic meta-analysis, pairwise phylogenetic distances are standardized so that correlations range between zero and one, thus our finding does not reflect a direct association between model fit and absolute phylogeny age.  However, phylogeny age in our dataset was positively correlated with two key indices, mean phylogenetic distance (r = 0.90, P < 0.001) and the coefficient of variation around mean pairwise phylogenetic distances (r = 0.42, P = 0.023).  Both of these relationships reflect the fact that our oldest phylogenies often contained a few species that were relatively divergent from the majority of species in the phylogeny.  The internode distances separating species in divergent outgroups from species in the rest of the phylogeny will be relatively long, increasing both the mean and variation around the mean in pairwise distance metrics.  As a result, phylogenetic meta-analytic models may fit such datasets poorly.  Furthermore, if taxa are distantly related enough, then a nontrivial number of pairwise phylogenetic correlations may be close to zero, in which case we would expect a negligible difference in model fit between traditional and phylogenetic meta-analyses.  

Random-effects versus fixed-effects and the relative fit of phylogenetic meta-analytic models
Similar to our findings regarding effect size change (see the main text), our predictors explained relatively little variation in phylogenetic model fit for random-effects versus fixed-effects models.  Even the best-fit random-effects models explained less than 20% of the variation in relative phylogenetic model fit, and no predictors were statistically significant.  As in our assessments of effect size change, this result for relative model fit partly reflects the fact that, among datasets, there was less variation in AWp to be explained for random- versus fixed-effects models.   Random effects are incorporated into meta-analytic datasets as an increase to the within-study variance associated with each effect size (by the estimated between-study variance, τ).  By adding this additional variance component, meta-analytic statistical power is decreased, and in our analyses one result was less of a distinction between model fit for phylogenetic versus traditional meta-analyses (means ± 1 SE; ML-based AWp = 0.24 ± 0.05 vs. 0.13 ± 0.23 for random- and fixed-effects, respectively, paired t-test t = 1.6, P = 0.13).  Thus, our analyses suggest that using random-effects meta-analyses may help reduce the effects of phylogenetic non-independence, even when those phylogenetic relationships are not explicitly taken into account.  This could be interpreted as a strength of incorporating random effects into the meta-analytic framework, consistent with previous calls to use random-effects models preferentially in a non-phylogenetic context (Gurevitch et al. 2001).  However, we caution against blindly taking this approach because it ignores a great deal of biological information, instead attributing observed variation to random noise, which includes many potential sources of variation.  
Final thoughts on quantifying the relative fit of phylogenetic meta-analytic models

We acknowledge that phylogenetic models rarely fit better than traditional meta-analytic models for the datasets analysed here; however, multiple lines of reasoning support the continued use of phylogenetic meta-analysis techniques.  First, while a resolved phylogeny is but one hypothesis of relationships among taxa, the hypothesis assumed by traditional meta-analysis – that all speciation events occurred simultaneously at the root of the phylogeny – is biologically implausible.  One could argue that the non-phylogenetic model is fundamentally inappropriate and should therefore be excluded from the set of candidate models under consideration.  However, we recognize that in some cases researchers may have a priori reasons for testing the traditional meta-analytic model, leading to its inclusion in the candidate set.  Second, because few of our datasets expressed a strong phylogenetic signal in their effect sizes (median K = 0.23), it is perhaps not surprising that phylogenetic models often fit these datasets poorly.  Other datasets with stronger phylogenetic signal should show much better fits to phylogenetic models; planned follow-up studies with simulated data will help to directly test this hypothesis.  Lastly, because of the large scope of our reanalysis, we were only able to consider a Brownian Motion model of trait evolution for each dataset, despite the fact that the diverse responses and diverse taxa represented in our datasets likely differed in their models of evolution.  More complicated evolutionary models (e.g., those permitting variation in natural selection across a phylogeny) may greatly improve meta-analytic model fit.  Ultimately, assessments of model fit and the statistical inferences that follow should reflect a balance between biological realism and parsimony, and we believe the additional complexity that comes from incorporating phylogenetic information will generally be warranted.
One unresolved issue regarding the use of AIC to compare model fit for phylogenetic versus traditional meta-analyses concerns the appropriate penalty for added model complexity.  In both the Q-based and the ML-based AIC calculations, we followed current recommendations by considering the inclusion of phylogeny to represent a single parameter added to the traditional meta-analytic model, regardless of phylogeny size or resolution.  The resultant model-complexity penalty is two in every case, despite the great variability in actual information content among phylogenies.  Determining the most appropriate penalty for models that include phylogenetic information was beyond the scope of our study, but because of the rapidly increasing use of both model-selection and phylogenetic methods in ecological studies we feel this is an area that could use further attention from the information theoretic community.    
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Table A1. 
Values of the moderator variables for each of the 30 datasets, as well as a comparison of model fit for traditional and phylogenetically corrected meta-analyses. The better of traditional or phylogenetic models is indicated via bold text; if both are bold within each of two Trad. and Phy. columns, they are within 2 AIC units and considered to fit the data equally well. AICc is shown for fixed- and random-effects meta-analyses, based either on Q-statistics or the maximum likelihood (ML).  Note that AICc based on Q is always lower for traditional than phylogenetic models. AICc from Q is more conservative as it penalizes phylogenetic models more heavily as Q increases with phylogeny size, and AICc from ML is considered more liberal as it does not penalize as heavily for phylogeny size. Those phylogenetic signal values (Pk) with P-values ≤ 0.05 are in bold text. 

	Data-

set*
	Age
	ES
	T
	G
	S
	N
	Ic
	Mpd
	γ
	K
	PK
	AICc Fixed-effects
	AICc Random-effects

	
	
	
	
	
	
	
	
	
	
	
	
	From Q
	From ML
	From Q
	From ML

	
	
	
	
	
	
	
	
	
	
	
	
	Trad.
	Phy.
	Trad.
	Phy.
	Trad.
	Phy.
	Trad.
	Phy.

	AE05
	209.7
	hd
	p
	1
	15
	13
	0.34
	257.6
	-2.13
	0.56
	0.34
	36.8
	51.2
	34.6
	41.9
	36.8
	51.2
	34.6
	41.9

	AE06
	351.8
	hd
	p
	3
	10
	9
	1.41
	1.4
	-0.41
	0.28
	0.81
	45.3
	56.3
	32.9
	45.3
	28.9
	33.1
	34.1
	38.5

	BB04
	107.3
	zr
	b
	2
	8
	6
	-0.59
	0.5
	-1.41
	0.87
	0.16
	37.6
	44.0
	2.4
	4.7
	27.5
	31.7
	7.0
	10.2

	BE07
	988.1
	hd
	a
	2
	27
	24
	0.15
	1393.0
	2.15
	0.04
	0.80
	134.3
	189.2
	133.9
	141.5
	100.0
	105.1
	146.2
	149.1

	BP05
	981.3
	df
	a
	1
	28
	27
	-0.29
	1250.3
	2.19
	0.03
	0.99
	194.6
	286.6
	95.8
	136.0
	79.5
	82.9
	67.5
	70.2

	CE00†
	981.2
	zr
	a
	3
	287
	161
	6.46
	446.3
	6.48
	0.04
	0.01
	1400.3
	2651.1
	--
	--
	864.9
	1079.2
	--
	--

	CS97
	118.2
	hd
	b
	2
	12
	11
	0.96
	0.40
	0.04
	0.94
	0.01
	45.5
	58.3
	41.6
	45.0
	38.5
	41.0
	45.2
	47.7

	HD04
	371.9
	hd
	ar
	2
	55
	43
	-0.44
	597.4
	-3.14
	0.38
	0.09
	284.9
	346.7
	195.2
	203.1
	191.5
	201.0
	208.2
	213.4

	HE08
	209.7
	o
	p
	2
	41
	32
	0.70
	1.4
	2.97
	0.09
	0.48
	65.9
	168.4
	-49.0
	-15.0
	65.9
	168.4
	-49.0
	-15.0

	HE09
	78.0
	hd
	b
	2
	20
	18
	1.12
	0.2
	-0.84
	0.42
	0.24
	94.1
	112.7
	57.6
	53.5
	68.0
	74.2
	63.2
	67.3

	HE10
	351.8
	rr
	p
	2
	100
	65
	1.78
	331.7
	-1.15
	0.14
	0.35
	581.3
	779.0
	214.3
	238.6
	342.8
	346.5
	213.0
	210.2

	IC09
	351.8
	df
	p
	4
	30
	20
	0.88
	509.4
	-1.33
	0.19
	0.74
	70.4
	112.7
	219.1
	219.4
	70.4
	112.7
	219.1
	219.4

	JB07
	538.5
	hd
	ar
	2
	27
	22
	2.01
	622.6
	-1.77
	0.30
	0.69
	121.6
	170.1
	68.5
	93.0
	84.5
	97.2
	73.8
	82.2

	LE06
	351.8
	zr
	p
	2
	41
	38
	2.62
	276.8
	-1.23
	0.31
	0.19
	170.1
	238.7
	35.4
	54.2
	126.8
	140.3
	37.8
	43.8

	LK06
	351.8
	zr
	p
	3
	16
	15
	1.34
	360.5
	0.57
	0.29
	0.38
	75.3
	106.3
	3.2
	15.3
	57.8
	69.9
	8.7
	16.8

	ME03
	217.5
	o
	a
	1
	14
	13
	-0.59
	1.4
	0.96
	0.40
	0.05
	46.7
	63.0
	-0.7
	-0.8
	41.1
	48.4
	-0.8
	0.3

	MF10
	351.8
	hd
	p
	3
	59
	40
	2.16
	320.5
	-1.11
	0.23
	0.23
	297.6
	380.6
	243.0
	243.8
	203.1
	227.3
	253.7
	270.8

	MN98
	53.0
	zr
	b
	1
	17
	15
	0.11
	0.2
	-1.69
	1.05
	0.004
	65.5
	77.5
	1.2
	1.3
	52.7
	57.9
	2.8
	5.3

	OS09
	981.3
	zr
	a
	4
	43
	39
	1.01
	1052.9
	0.57
	0.23
	0.003
	162.7
	252.1
	41.4
	55.1
	124.6
	137.4
	42.8
	43.8

	PaE05
	98.3
	zr
	b
	1
	22
	14
	1.98
	0.2
	1.02
	0.14
	0.75
	15.9
	71.2
	-12.3
	11.2
	15.9
	71.2
	-12.3
	11.2

	PeE10
	2622.2
	o
	m
	4
	29
	26
	1.85
	1960.1
	1.12
	0.09
	0.87
	74.0
	103.6
	62.2
	84.2
	74.0
	103.6
	62.2
	84.2

	PoE10
	1407.8
	zr
	m
	1
	22
	21
	0.75
	1694.8
	1.47
	0.11
	0.53
	72.2
	1227.5
	39.3
	60.8
	65.1
	85.6
	40.0
	47.0

	PrE05
	2622.2
	rr
	m
	2
	60
	53
	3.97
	1528.3
	0.02
	0.20
	0.08
	442.2
	590.4
	245.1
	280.4
	159.3
	186.8
	81.9
	77.0

	RE10
	981.25
	o
	a
	3
	43
	39
	1.45
	1207.1
	1.22
	0.17
	0.05
	157.6
	254.9
	136.3
	152.7
	126.5
	145.1
	136.7
	137.7

	SK08
	106.9
	hd
	b
	1
	17
	11
	2.11
	0.2
	1.70
	0.17
	0.48
	17.7
	56.7
	9.3
	20.3
	17.7
	56.7
	9.3
	20.3

	Si05
	538.5
	zr
	ar
	1
	12
	9
	0.46
	762.1
	-1.81
	0.56
	0.53
	44.2
	57.0
	-14.0
	-6.9
	37.4
	44.6
	-12.4
	-6.6

	TE04
	170.6
	hd
	ar
	2
	25
	23
	1.74
	267.3
	-2.40
	0.49
	0.36
	134.5
	160.3
	59.8
	70.7
	76.7
	80.5
	61.3
	64.7

	TJ05
	170.6
	hd
	ar
	2
	25
	23
	1.02
	279.7
	-3.14
	0.47
	0.61
	89.2
	113.8
	21.9
	31.7
	69.3
	76.2
	19.8
	24.7

	VE99
	981.3
	zr
	a
	2
	20
	17
	-0.08
	1042.9
	2.91
	0.15
	0.21
	114.3
	162.6
	-0.6
	6.6
	69.5
	73.0
	4.4
	7.0

	VP03
	981.3
	o
	a
	3
	54
	51
	-0.13
	1361.7
	1.90
	0.18
	0.001
	325.9
	444.3
	233.3
	285.3
	181.3
	184.5
	197.5
	191.5


Age: age of root node in MY; ES: type of effect size in meta-analysis (hd: Hedge's D; zr: Fisher's Z; df: difference; o: other; rr: response ratio); T: type of taxonomic group covered in the meta-analysis (p: plants; b: birds; ar: arthropods; a: other animals; m: multiple taxa; G: number of levels in grouping variable); S: number of species in phylogeny; N: number of nodes in phylogeny; Ic: Colless' index, yule-standardized; Mpd: mean phylogenetic distance; γ: gamma; K: Blomberg's phylogenetic signal; PK: P-value for Blomberg's phylogenetic signal (α < 0.05).

* A key to the dataset identifier code is given in Table D1

† AICc from ML could not be calculated for the CE00 dataset (Connor et al. 2000) due to large phylogeny size. 

Table A2. 

Model-averaging results for assessments of phylogenetic relative model fit.  Column headings as in Table 1 in the main text.
	Model Term
	Imp Wt
	Estimate (SE)
	95% CI
	
	Imp Wt
	Estimate (SE)
	95% CI

	
	AWp from Q-based AICc (fixed-effects models)
	
	AWp from ML-based AICc (fixed-effects models)

	Intercept
	1.00
	33.78 (6.07)
	(21.64, 45.92)
	
	1.00
	11.99 (6.64)
	(-1.30, 25.28)

	Number of species*
	1.00
	-32.19 (3.58)
	(-39.34, -25.03)
	
	0.60
	-3.28 (2.02)
	(-7.32, 0.76)

	Phylogenetic signal (K)*
	-----
	-----
	-----
	
	-----
	-----
	-----

	Tree balance (Ic)
	-----
	-----
	-----
	
	-----
	-----
	-----

	Distribution of node ages (γ)
	0.94
	-1.36 (0.55)
	(-2.47, -0.25)
	
	0.06
	-0.20 (0.30)
	(-0.80, 0.40)

	Phylogeny age*
	0.27
	-2.49 (2.91)
	(-8.30, 3.33)
	
	1.00
	-3.38 (1.32)
	(-6.02, -0.73)

	Proportion dichotomous nodes
	0.06
	13.43 (14.63)
	(-15.82, 42.69)
	
	0.33
	-11.36 (6.91)
	(-25.19, 2.46)

	
	
	
	
	
	
	
	

	
	AWp from Q-based AICc (random-effects models)
	
	AWp from ML-based AICc (random-effects models)

	Intercept
	1.00
	-18.49 (5.39)
	(-29.28, -7.70)
	
	1.00
	-1.20 (0.53)
	(-2.27, -0.14)

	Number of species*
	0.10
	1.21 (1.45)
	(-1.70, 4.12)
	
	-----
	-----
	-----

	Phylogenetic signal (K)*
	-----
	-----
	-----
	
	0.05
	0.39 (0.59)
	(-0.79, 1.58)

	Tree balance (Ic)
	0.92
	-0.87 (0.34)
	(-1.54, -0.19)
	
	0.50
	-0.18 (0.15)
	(-0.48, 0.11)

	Distribution of node ages (γ)
	0.47
	-0.33 (0.21)
	(-0.76. 0.09)
	
	-----
	-----
	-----

	Phylogeny age*
	-----
	-----
	-----
	
	0.21
	0.53 (0.42)
	(-0.31, 1.36)

	Proportion dichotomous nodes
	1.00
	17.78 (5.59)
	(6.59, 28.96)
	
	-----
	-----
	-----


All analyses run with 26 datasets (CE00, HE08, PeE10 and PaE05 excluded).

*log10-transformed predictor variables.
Figure A1. 

Explaining differences in model fit for traditional vs. phylogenetic meta-analyses: AWp, which measures the relative fit of phylogenetic meta-analyses, in relation to phylogeny size (number of species) and gamma (an index of phylogeny shape).  AWp from Q-based AICc is shown in panels (a) and (b), while AWp from ML-based AICc is shown in panels (c) and (d). Results from fixed-effects models are shown depicted by circles (solid line shows best fit), and those from random-effects models are depicted by triangles (dashed line shows best fit).
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