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Abstract. A common effect size metric used to quantify the outcome of experiments for
ecological meta-analysis is the response ratio (RR): the log proportional change in the means
of a treatment and control group. Estimates of the variance of RR are also important for
meta-analysis because they serve as weights when effect sizes are averaged and compared. The
variance of an effect size is typically a function of sampling error; however, it can also be
influenced by study design. Here, I derive new variances and covariances for RR for several
often-encountered experimental designs: when the treatment and control means are correlated;
when multiple treatments have a common control; when means are based on repeated
measures; and when the study has a correlated factorial design, or is multivariate. These
developments are useful for improving the quality of data extracted from studies for meta-
analysis and help address some of the common challenges meta-analysts face when
quantifying a diversity of experimental designs with the response ratio.

Key words: generalized least squares; large-sample theory; log response ratio; multivariate effect size;
nonindependence; variance–covariance matrix; weighted regression.

INTRODUCTION

The response ratio (RR) has emerged as a common

effect size metric for the meta-analysis of ecological

research (Hedges et al. 1999), and for quantifying simple

two-group experimental designs the calculation of RR is

straightforward:

RR ¼ ln X̄T=X̄Cð Þ: ð1Þ

Here, RR is the natural-log proportional change in the

means (X̄) of a treatment (T) and control group (C).

Meta-analysis, when pooling RR from multiple studies,

also assigns a weight to each RR that is inversely

proportional to its sampling variance:

r̂2 RRð Þ ¼ SDCð Þ2

NCX̄
2
C

þ SDTð Þ2

NTX̄
2
T

ð2Þ

where SD and N are the standard deviation and sample

size of X̄T and X̄C, respectively (see Hedges and Olkin

1985, Hedges et al. 1999). The process of quantifying

study outcomes with RR and the subsequent down-

weighting of studies with large variances form the basis

for several successful meta-analyses in ecology (see

Curtis and Wang 1998, Arnqvist and Nilsson 2000,

Schmitz et al. 2000, Ainsworth and Long 2005, Parker et

al. 2006).

However, since its formal description by Hedges et al.

(1999), RR has had little further development, and one

unsolved problem of RR is its inability to properly

quantify experiments with varying research designs

(Lajeunesse 2010). For example, the above description

of r̂2(RR) assumes that X̄T and X̄C are from an

experiment with an independent-groups design, where

one group serves as the control and the other receives an

experimental manipulation or treatment. However,

when a study has a correlated-groups design, such as

pre- and post-test experiments of animal behavior,

individuals serve as their own control prior to a

treatment. This design is a challenge for estimating

r̂2(RR) because measures before and after treatments

on the same individuals will be correlated, and this can

influence the accuracy of the variance estimate, perhaps

leading to erroneous conclusions when pooling multiple

effects. These issues are less a challenge for more

established effect sizes like Hedges’ d, where 30 years

of cross-disciplinary development has resulted in ana-

logues and conversions of d for nearly every conceivable

experimental design (e.g., Raudenbush et al. 1988,

Gleser and Olkin 1994, Gurevitch et al. 2000, Kim and

Becker 2010).

Experimental ecology is much more diverse than the

scenarios for which the original formulation of RR was

developed: many hypotheses are tested using experi-

ments with partial-random designs and designs with

multiple variables. Here, I derive new variance and

covariance equations for RR that allow for the pooling

of results from these types of experiments. I focus

primarily on developing covariance equations for RR

because these are essential for describing how multiple

effect sizes relate within an experiment. For example,

rather than calculating separate RR for each control–

treatment contrast in a multi-treatment study, a single
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adjusted RR can be calculated for an entire experiment.

This limits the redundancy arising from calculating

multiple (nonindependent) RR from a single experi-

ment, while also minimizing the overrepresentation of

an experiment in the final meta-analysis (see Hunter and

Schmidt 2004).

In particular, I rely heavily on large-sample theory to

estimate the variance of RR (Stuart and Ord 1994), and

apply generalized least squares (GLS) models to pool

within-study effects. The current formulation of r̂2(RR)

is based on the assumption that with large sample sizes

the sampling distribution of RR will asymptote to a

normal distribution (Hedges et al. 1999). This is a

convenient distribution because it has simple and well

understood properties, in contrast to the true (exact)

distribution of RR, which is difficult to develop

statistically (discussed further in the Appendix). Another

advantage of this assumption is that the statistical

relationships among multiple, correlated RR can be

modeled using a GLS framework. This framework itself

has a normality assumption required for analysis.

Again, I entirely focus on providing adjustments for

the variance and covariance of the response ratio;

discussion on the advantages\disadvantages of this

metric over other effect size metrics is found in Hedges

et al. (1999), Osenberg et al. (1999), and Lajeunesse and

Forbes (2003).

AGGREGATING WITHIN-STUDY EFFECTS

Before outlining the variance and covariance equa-

tions for RR, I begin with a brief description on how

multiple RR can be aggregated prior to meta-analysis.

This aggregate RR and its variance r̂2(RR) will become

the data to be pooled in a meta-analysis. For example,

multiple pairwise RR can be extracted from a single

experiment testing multiple treatments with a control

(Gleser and Olkin 1994). These RR should not be

treated independently in meta-analysis because they

share a common control. An exception is if the meta-

analyst groups these multiple effects separately among

(mutually exclusive) moderator categories. Here, the

potential bias for nonindependence is minimized because

these multiple RR will not be pooled together.

To estimate an aggregate within-study response ratio

from k number of RR, the following weighted GLS

regression (in matrix notation) can be applied:

RR ¼ X 0V�1X
� ��1

X 0V�1E ð3Þ

where matrices with the superscript prime symbol and

negative one indicate their transposition and inversion,

respectively. Here, X is a column vector of ones with k

number of rows, V is the variance–covariance matrix

with k 3 k dimensions, and E is a column vector of k

number effect sizes (here RR as defined in Eq. 1). The

variance of Eq. 3 is r̂2 RR
� �

¼ (X0V
�1
X)�1. Modifying

the elements of the variance–covariance matrix V is how

various forms of nonindependence can be managed

among multiple RR from the same experiment (see

Lajeunesse 2009). The ith of k elements of V are

typically defined as follows:

Vii� ¼
r̂2 RRið Þ when i ¼ i�ðmain diagonalÞ
cov RRi;RRi�
� �

when i 6¼ i�ðoff-diagonalsÞ:

�
ð4Þ

The inverse of V becomes the weighting matrix used to

aggregate multiple RR; where RR with large variances

(e.g., large sampling error) and large covariances (e.g.,

strong nonindependence) are down-weighted in the final

RR estimate. In the following sections, I outline the

equations for the variance (r̂2) and covariances (cov) of

V for multiple RR derived from multi-group designs.

ESTIMATION OF VARIANCE

Derivation of large-sample variance

A formal derivation of the large-sample variance of

RR is missing from the literature; see Hedges et al.

(1999) for a partial description on how it was developed.

Here, I report this derivation to provide insight as to

how more elaborate variances and covariances can be

developed for RR. The variance of RR (Eq. 2) is a

sample statistic of the ‘‘true’’ population of effect sizes

that is approximately normal with a mean of k¼ ln(lT/

lC) and a variance of r2(k) ¼ r2
C/(NCl2

C ) þ r2
T/(NTl2

T)

Here, l and r2/N are the mean and variance for the

distributions of the control (X̄C) and treatment groups

(X̄T). In the Appendix, I discuss why this distribution of

k is approximate. To derive the population variancer2

(k), begin by applying the Taylor series approximation

method to find all the first-order expansions of k (Stuart

and Ord 1994). These are the derivatives (D) to each

variable in k:

Dk=DlT ¼ 1=lT Dk=DlC ¼ �1=lC:

And let A represent a vector of these derivatives:

A 0 ¼ 1=lT �1=lC½ �:

Then define the large-sample variance–covariance ma-

trix (R) of lT and lC as:

R ¼ r2
T=NT 0

0 r2
C=NC

� �
:

Here, the main diagonal of R contains the large-

sample approximations for the population variance (r2)

of the two means in k. These approximations are found

in Stuart and Ord (1994). The off-diagonals of R
describe the zero covariance (statistical independence)

between lT and lC. Finally, by using matrix algebra and

by substituting l and r2 with the sample statistics X̄ and

(SD)2, the large-sample variance of RR originally

defined by Hedges et al. (1999) is

r̂2 RRð Þ ¼ A 0RA ¼ SDCð Þ2

NCX̄
2
C

þ SDTð Þ2

NTX̄
2
T

¼ Eq: 2: ð5Þ
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RR and variance when the control and treatment means

are correlated

In the Introduction I described an example of a study

with a correlated-groups design, where individuals serve

as their own control prior to a treatment. These before

and after experiments, or repeated measures, have a

partial-random design, and are a challenge for comput-

ing the variance of RR because X̄T and X̄C will be

statistically correlated. However, if this correlation (r) is

known then this information can be used to adjust

r̂2(RR) as follows:

r̂2 RRð Þr ¼ SDCð Þ2

NCX̄
2
C

þ SDTð Þ2

NTX̄
2
T

� 2rSDCSDT

X̄CX̄T

ffiffiffiffiffiffiffiffiffiffiffiffi
NCNT

p : ð6Þ

Here, r̂2(RR)r was derived by using the matrix algebra

in Eq. 5 and by assuming that the predicted covariance

(cov) between lT and lC was

cov lC; lTð Þ ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

C=NC

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

T=NT

q
:

This covariance is the large-sample covariance equa-

tion for two correlated variables (see Stuart and Ord

1994), and becomes the off-diagonals (replacing the

zeros) of R. The variance r̂2(RR)r requires an estimate

of the correlation q, such as a Pearson product-moment

correlation coefficient r. If it is not available in the study,

it may be possible to pool r from other similar studies

(see Rosenthal 1984 for how to pool correlations).

Alternatively, if a paired (or repeated-measures) t test is

reported in the study, this t can be used to estimate

r̂2(RR)r, where N ¼ NC ¼ NT, and

r̂2 RRð Þr ¼ 1

N ½ SDCð Þ2

X̄
2
C

þ SDTð Þ2

X̄
2
T

� SDCð Þ2 þ SDTð Þ2 � t�2N X̄T � X̄Cð Þ2

X̄CX̄T
�:
ð7Þ

The derivation of Eq. 6 is found in the Appendix.

ESTIMATION OF COVARIANCE

Derivation of the large-sample covariance

Here I derive a general form of the large-sample

covariance (cov) needed to describe how two RR behave

together statistically. Later, I modify this generalization

to determine the covariance of multiple RR from multi-

group experiments. As when deriving the variance of

RR, let A and B represent vectors of the derivatives of

all the variable of the response ratios kA¼ ln(lA
T /l

A
C) and

kB ¼ ln(lB
T /l

B
C):

A 0 ¼ 1=lA
T �1=lA

C 0 0
� 	

B 0 ¼ 0 0 1=lB
T �1=lB

C

� 	
:

When kA and kB are independent, their large-sample

variance–covariance matrix R is defined by the diagonal

matrix of the Appendix: Fig. A1a, where the main
diagonal of R has the large-sample variances of each

mean and all off-diagonals (covariances) are zero. Note

that A0RA and B0RB will yield r2(kA) and r2(kB). These
are the population variances of kA and kB. Further, A0RB
and B0RA will yield zero covariance because the off-
diagonals of R do not specify any statistical dependence

between the two k. In the following sections, I describe

experimental designs with nonzero covariances.

Covariance when multiple treatments share

a common control

In the previous section, I outlined the covariance

between two independent RR. Here, I describe an
ANOVA-style study where multiple treatments are

compared to a single control. One approach to quantify
this multi-treatment study is to calculate RR separately

for each control–treatment pair, and then treat these RR
as independent data in a meta-analysis. Keeping each

RR separate may be important if the identity of the

treatment itself is a moderator to be tested (e.g., whether
studies examining treatment A differ from studies testing

B). However, if the meta-analyst is simply interested in
quantifying the entire experimental outcome across all

treatments, then treating these RR as separate data

points violates assumptions of independence for meta-
analysis (Gleser and Olkin 1994). To limit this bias,

RRA and RRB should be aggregated prior to meta-
analysis (see Aggregating within-study effects). This

aggregate can be estimated by pooling RRA and RRB

using the regression Eq. 3 with this variance–covariance
matrix:

VX̄C ¼

SDCð Þ2

NCX̄
2
C

þ
SDA

T

� �2

NA
T X̄

A
T


 �2

SDCð Þ2

NCX̄
2
C

SDCð Þ2

NCX̄
2
C

SDCð Þ2

NCX̄
2
C

þ
SDB

T

� �2

NB
T X̄

B
T


 �2

2
66666664

3
77777775
:

ð8Þ

Note that the variance (main diagonal) of each RR

remains the same as in Eq. 2, but the covariance (off-
diagonals) is now the variance due to the shared control

mean X̄C. To evaluate the strength of this nonindepen-
dence due to this shared control, it may also be useful to

calculate the correlation (r) between RRA and RRB:

r ¼
SDCð Þ2= NCX̄

2
C


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 RRA
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂2 RRB
� �q : ð9Þ

The covariance term in VX̄C was derived by including
nonzero off-diagonals in R (the matrix describing how

the population means between multiple k are related)
that account for the shared control among multiple RR

(see Appendix: Fig. A1a). These new off-diagonals

become cov lA
C ; l

B
C

� �
¼ rB

C

� �2
=NB

C , which is a reduced
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form of the large-sample covariance

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA

C

� �2
=NA

C

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rB

C

� �2
=NB

C

q
when lA

C ¼ lB
C and q ¼ 1. Finally, the variance and

covariance for RRA and RRB described in VX̄C were

estimated by solving A0RA, A0RB, and B0RB with the R
described in the Appendix: Fig. A1b.

I illustrate this method with the Sokol-Hessner and

Schmitz (2002) study on the mortality rate of grasshop-

pers when exposed to spider predators A (X̄ ¼ 0.011,

SD¼0.0099, N¼14), B (X̄¼0.024, SD¼0.0179, N¼14),
C (X̄¼ 0.041, SD¼ 0.0179, N¼ 14), and a control group

without predators (X̄¼ 0.02, SD¼ 0.0162, N¼ 14). The

three RR for each species control–treatment pair are E

¼ [�0.598 0.182 0.718]0, and their variances/covar-

iances defined by the equations in the main and

off-diagonals of VX̄C are

V ¼
0:105 0:047 0:047

0:047 0:087 0:047

0:047 0:047 0:061

2
4

3
5:

The aggregate response ratio (RR), adjusted for the

nonindependence due to a shared control among the

three spider treatments, is RR ¼ 0.4 with r̂2 RR
� �

¼
0.0558. The regression Eq. 3, applying E and V from the

previous paragraph, was used to calculate RR. Note that

pooling RR without accounting for the shared control

(off-diagonal covariance) yields an RR ¼ 0.218 and

r̂2 RR
� �

¼ 0.0267. This aggregate effect size underesti-

mates the magnitude of experimental manipulations,

and in the context of meta-analysis, will have a greater

relative weight in the overall analysis.

Variance and covariance for repeated-measures

or matched-pairs designs

The simplest repeated-measures or matched-pairs

design compares the experimental response between a

control and treatment group, both before (PRE) and

after (POST) a treatment effect. This type of a

correlated-groups design is meant to control for

selection effects of individuals assigned to each group

prior to experimentation. For example, with a small

sample size, and through random chance, larger

individuals could be assigned to the treatment group.

This would bias the posttreatment measurements should

size itself becomes a response variable. A typical

approach for quantifying this type of experiment for

meta-analysis is to simply use the last (POST) endpoints

as an estimate of the study outcome (see Gurevitch and

Hedges 1999). However, this is a lost opportunity to

improve the precision of RR because important

information that contributed to the outcome of the

treatment effect was ignored.

To integrate these data, we can use both the PRE and

POST treatment results to estimate an aggregate RR.

These pretreatment RRPRE¼ lnðX̄PRE
T =X̄

PRE
C Þ and a post-

treatment RRPOST ¼ lnðX̄POST
T =X̄

POST
C Þ will individually

have the same variances as described in Eq. 2, but will

have a covariance

cov RRPRE;RRPOST
� �

¼ rCSDPRE
C SDPOST

C

X̄
PRE
C X̄

POST
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPRE

C NPOST
C

q

þ rTSDPRE
T SDPOST

T

X̄
PRE
T X̄

POST
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPRE

T NPOST
T

p ð10Þ

where r is the correlation between the PRE and POST

treatment means for the control and treatment groups.

If there is no reason to expect that rC and rT differ, these

can be pooled (see Rosenthal 1984). This covariance was

derived using the A and B defined in the section

Derivation of the large-sample covariance, but calculating

A0RB with the within-study R defined in the Appendix:

Fig. A1c.

This example has the simplest repeated-measures

design: only PRE and POST treatment periods are

compared. However, a series of measurements can also

be pooled with the covariance Eq. 10. For example, in

the case where multiple measurements are autocorre-

lated (e.g., are dependent with the only previous

measurement), the duration between measurements as

a scaled linear distance can be treated as the correlations

of Eq. 10. This assumes that measurements with short

intervals will show the least amount of change and will

be the most similar. In this case, the PRE and POST

treatment effects become time interval ONE and TWO,

TWO and THREE, and so on. For each of these

pairwise intervals, their covariance is then applied to the

regression Eq. 3 to pool each RR across all intervals.

Typically, however, the outcome of interest from a

repeated-measures experiment is not the aggregate effect

across multiple time intervals, but the trajectory of

curves due to treatment effects. This form of repeated-

measures meta-analysis has been described elsewhere

(see Peters and Mengersen 2008).

Response ratio and variance for factorial designs

Morris et al. (2007) describe the variance for both the

overall effects (RRO) and interaction effects (RRI) for

studies with a 2 3 2 factorial design (also see Hawkes

and Sullivan 2001). The individual effects among factors

use the RR and r̂2(RR) described in Eqs. 1 and 2. Here,

I briefly revisit RRO and RRI, but make additional

recommendations on how to proceed when studies have

a correlated factorial design.

To quantify the overall (O) effects of a 23 2 factorial

experiments contrasting the control (C) and treatment

means (T) between groups A and P, the following RRO

can be used:

RRO ¼ ln
X̄

A
T þ X̄

A
C

X̄
P
T þ X̄

P
C

 !
ð11Þ

which has a variance of
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r̂2 RRO
� �

¼ 1

X̄
A
T þ X̄

A
C

 !2
SDA

T

� �2

NA
T

þ
SDA

C

� �2

NA
C

 !

þ 1

X̄
P
T þ X̄

P
C

 !2
SDP

T

� �2

NP
T

þ
SDP

C

� �2

NP
C

 !
: ð12Þ

To quantify the interaction (I) effect, the response ratio is:

RRI ¼ ln
X̄

A
C

X̄
P
C

 !
� ln

X̄
A
T

X̄
P
T

 !
ð13Þ

with a variance of

r̂2 RRI
� �

¼
SDA

C

� �2

X̄
A
C


 �2

NA
C

þ
SDA

T

� �2

X̄
A
T


 �2

NA
T

þ
SDP

C

� �2

X̄
P
C


 �2

NP
C

þ
SDP

T

� �2

X̄
P
T


 �2

NP
T

ð14Þ

which can be simplified to r̂2(RRI) ¼ r̂2(RRA) þ
r̂2(RRP) where r̂2(RRA) and r̂2(RRP) are the variances

defined by Eq. 2, respectively, for factors A and P.

In the Appendix, I outline how the variances of

r̂2(RRO) and r̂2(RRI) were derived, and further modify

this derivation to develop analogous variances to Eqs.

12 and 14 for experiments with a correlated factorial

design. A correlation can occur between factors A and P

if these are repeated measures: again, the correlation

coefficient r is integrated in the calculations of the new

variances for both the overall r̂2(RRO
r ) and interaction

r̂2(RRI
r) models. The equation for r̂2(RRO

r ) is rather

cumbersome and is found in the Appendix, whereas, for

the interaction effect, the variance of RRI becomes:

r̂2 RRI
r

� �
¼ r̂2 RRr

C

� �
þ r̂2 RRr

T

� �
ð15Þ

where r̂2(RRr
C) and r̂2(RRr

T) are defined in Eq. 6, but

here r̂2(RRr
C) uses the two controls, and r̂2(RRr

T) the

two treatment effects, from factors A and P.

Multivariate RR

It is not uncommon for a single study to report

control–treatment contrasts for several dependent var-

iables (e.g., measurement metrics or traits estimates).

For example, experiments on the anti-herbivore defenses

of plants often explore suites of chemical and structural

traits (e.g., Carmona et al. 2011). However, these traits

are often related to one another, and may be heavily

correlated (Raudenbush et al. 1988). This violates

assumptions of meta-analysis because individual effect

sizes calculated from each trait will not represent

independent pieces of information (Hedges and Olkin

1985). However, if the correlations between traits are

available, for example between traits X and Y, then the

RR of each trait can be combined using the regression

Eq. 3 with the following covariance:

cov RRX;RRY
� �

¼ rSDX
T SDY

T

X̄TȲT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NX

T NY
T

p þ rSDX
CSDY

C

X̄CȲC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NX

C NY
C

p : ð16Þ

Eq. 16 can also be generalized to aggregate RR from

multiple, correlated traits. For example, in a study on

the phenotypic plasticity of a milkweed, Agrawal et al.

(2008) reported treatment and control means (with and

without herbivory) for multiple plant traits (trichome

density, percentage of water, and C:N ratio), in addition

to the correlations between these traits (see data in

Appendix: Table A1). These correlations can be used to

estimate an aggregate RR across these three plant traits

as follows. First, calculate RR for each control–

treatment pair: let E represent a vector of these three

effect sizes E ¼ [�0.606 0.155 �0.488]0. Next, calcu-

late the variances of these RR using Eq. 2 and their

covariance with Eq. 16. These variance and covariance

are found in V:

V ¼
0:148 �0:004 0:008

�0:004 0:004 �0:005

0:008 �0:005 0:088

2
4

3
5:

Finally, applying E and V to the regression Eq. 3 yields

an aggregate RR ¼ 0.073 with a variance of r̂2 RR
� �

¼
0.0026. If the meta-analyst ignored these correlations,

the aggregate RR would have overestimated the effect

(RR ¼ 0.109) and variance r̂2 RR
� �

¼ 0.0034.

DISCUSSION

The current formulation of the response ratio

quantifies experiments with a simple control–treatment

design. However, the composition of ecological studies

available for meta-analysis is broad and includes designs

with various manipulations on multiple traits (see

Jennions and Møller 2003). Here, I provide equations

to quantify various experimental designs. These are

important because if incorrect formulae are used, the

effect size estimate and its variance may exaggerate the

outcome of the experimental manipulation (Gleser and

Olkin 1994). This will influence the strength of

hypothesis tests with ecological meta-analysis (Lajeu-

nesse 2010). Applying these equations to estimate RR

will also minimize the effect of incorrect variances

influencing the outcome of moderator tests (e.g.,

homogeneity tests; see Hedges and Olkin 1985). For

example, not accounting for differences in experimental

design across studies may yield a significant moderator

effect when none actually exist.

I particularly focus on modifying the variance of

effect sizes as way to minimize bias by adjusting the

weight of effect sizes when pooling multiple studies. I

also focus on covariance structures for pooling multiple

related effects from a single study. By applying these

equations to adjust or aggregate within-study effect

sizes, meta-analysts are no longer forced to choose a

single aspect of a study to quantify. For instance, meta-

analysts are often left to select which manipulation effect
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to estimate from a study, make judgments on which

manipulation is more appropriate for the meta-analysis
(Gurevitch et al. 2003), or perhaps even ignore the
correlations that exist between multiple effects estimated

from the same study. This can result in a loss of
information when estimating the magnitude of effect

and variance for that study, and ignoring correlations
will affect the Type I error rate (likelihood of a false

positive result) of nonzero and homogeneity tests
(Walsh 1947). These homogeneity tests are important

because they evaluate differences among RR beyond the
predicted differences due to sampling error (Hedges and
Olkin 1985). Extracting the correlations necessary to

compute many of the variances described in this paper
will also be a challenge. However, because correlations

are a very common type of effect size metric (Rosenthal
1984), various ways to extract correlations from

experiments using conversions, imputations and approx-
imation methods have been developed (see Lipsey and
Wilson 2001, Lajeunesse, in press b).

The primary reason to aggregate multiple within-
study effect sizes prior to a between-study meta-analysis

was to address any possible redundancy of information.
Multiple extractions of RR from the same experiment

are not independent pieces of information. Addressing
this problem is necessary because the amount of

information included in a meta-analysis strongly affects
the precision of the combined (pooled) effects. This is
because the statistical power of meta-analysis is indi-

rectly a function of the number of effect sizes included in
the analysis (see Lajeunesse, in press a).

Aggregating effect sizes prior to meta-analysis is
useful if a meta-analyst is limited to software that

cannot easily integrate information on the covariance of
effect sizes. However, with some understating of GLS

modeling, it is possible to perform a meta-analysis that
simultaneously pools all within- and between-study RR.
Here the within-study matrices (such as VX̄C ) are

included as sub-matrices in a between-study variance–
covariance matrix. For example, the elements of a

between-study V can describe the relationships among
all effect sizes from each study as follows:

E ¼

0:337

0:328

0:319

0:315

2
6664

3
7775

V ¼

0:0019 0:0016 0:0000 0:0000

0:0016 0:0018 0:0000 0:0000

0:0000 0:0000 0:0021 0:0000

0:0000 0:0000 0:0000 0:0011

2
6664

3
7775:

Here, we have an effect size vector (E) and variance–
covariance matrix (V) for a meta-analysis of three

independent studies. The first study (shown by the top
two rows in E) reported two treatment effects with a

shared control (see example in Eq. 8). The shared

variance due to the common control is defined in the

upper left 2 3 2 submatrix of V.

Modeling all the within- and between-study variances

simultaneously has the advantage of expanding the

domain of testable hypotheses (Becker and Schram
1994). For example, this model can be used to

systematically explore each individual response outcome

(e.g., dependent variables or traits used to estimate RR),

or specific treatment effects, and whether these treat-
ments effects depend on factors such as study design or

other biological predictors that may moderate effects.

This exploration is possible because all of the calculated

RR (not the aggregate RR) are included in the model:

This retains the identity of each treatment or trait used
to calculate effect sizes. For example, with a full model,

we can pool all the RR across studies that explore the

same treatment effect, with the following design matrix:

X 0 ¼ 1 0 0 1

0 1 1 0

� �
:

The first study (shown by the first two columns) had two

RR from treatments A and B, whereas the second study

(third column of X) reported only the manipulation with

treatment B, and the third only with A. Integrating X, E,

and V in the regression model of Eq. 3 will yield two
pooled effect sizes: one for all the RR based on treatment

A, and the other for all the B effects. This highlights the

ability to include studies with different designs within a

single meta-analysis, even if they report only a subset of
all the treatment effects explored across studies.

The disadvantage of this type of mixed-experiment

modeling is the difficulty in estimating the between-

study variance (s2) required for random-effects meta-

analysis. Here, the commonly used method of moments

approach will not suffice (see Hedges and Olkin 1985).
However, maximum likelihood and restricted maximum

likelihood (REML) approaches are emerging as power-

ful alternatives to estimating s2 (Berkey et al. 1998); only
recently have advances allowed for fitting more elabo-
rate variance–covariance designs with random-effects

models (see Jackson et al. 2010).

CONCLUSION AND PROSPECTUS

Dealing with multiple effect sizes from a single
experiment is one of many challenges meta-analysts face

when they use the response ratio. Another challenge is

when studies do not report the means, SD and N needed

to compute RR; but the test statistics themselves, such as t

tests or F tests, are available. These test statistics are still
useful to estimate an effect size based on a metric like

Hedges’ d because conversions are available (Lipsey and

Wilson 2001, Nakagawa and Cuthill 2007). These

conversions are possible because Hedges’ d has a t
distribution whose properties and relationship with other

statistical distributions are well understood (Hedges

1982). However, it is unclear to me whether similar

conversions can be formulated for RR given its unwieldy

distribution (the Appendix has additional discussion on
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this problem). Further exploration of this issue, and other

issues that affect the overall utility of the response ratio,

will be necessary to improve inferences from published

experiments for ecological meta-analysis.
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Schmitz, O. J., P. A. Hambäck, and A. P. Beckerman. 2000.
Trophic cascades in terrestrial systems: a review of the effects
of carnivore removals on plants. American Naturalist
155:141–153.

Sokol-Hessner, L., and O. J. Schmitz. 2002. Aggregate effects of
multiple predator species on a shared prey. Ecology 83:2367–
2372.

Stuart, A., and J. K. Ord. 1994. Kendall’s advanced theory of
statistics. Volume 1: Distribution theory. Griffin, London,
UK.

Walsh, J. E. 1947. Concerning the effect of the intraclass
correlation on certain significance tests. Annals of Mathe-
matical Statistics 18:88–96.

APPENDIX

Discussion on large-sample theory, derivation of variances of response ratios from factorial designs, raw data used in examples,
and variance–covariance matrices used to estimate the covariance between two response ratios (Ecological Archives E092-178-A1).
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Ecological Archives E092-178-A1 

Marc J. Lajeunesse. 2011. On the meta-analysis of response ratios for studies 
with correlated and multi-group designs. Ecology 92:2049–2055. 

Appendix A. Discussion on large-sample theory, derivation of variances of response 
ratios from factorial designs, raw data used in examples, and variance-covariance 
matrices used to estimate the covariance between two response ratios. 
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Large-sample theory and the distribution of RR 

The statistics of meta-analysis apply large-sample theory to approximate the variances of effect 

sizes.  This is because the exact (small-sample) variances of effect sizes are often too 

complicated and difficult to develop statistically (Lehmann 1999).  For example, the exact 

variance of non-log transformed RR measures the spread of a mixed distribution with both a 

Cauchy and bimodal density probabilities (see Marsaglia 1965; 2006).  To avoid using this 

distribution, large-sample theory assumes that with large sample sizes, or in the case of RR, 

standardized means CCC SDNX and TTT SDNX , the sampling distribution of RR 

asymptotes to a normal distribution.  Thus, the variance of RR defined in equation (2) is not the 

exact (true) variance of RR, but a large-sample normal approximation.  Assuming a normal 

distribution has the advantage of greatly simplifying how variances are estimated; this is because 

the properties of the normal distribution are fairly simple and well understood (Lehmann 1999).  

The second advantage of using a normal approximation is that effect sizes now fit the normality 

assumption of GLS modeling (e.g., weighted regressions) and other important hypothesis-testing 

statistics like 95% confidence intervals (CI).  Taking the natural log of RR helps to improve the 

fit of this effect size metric to these normality assumptions (see Hedges et al. 1999).   

 However, when CCC SDNX and TTT SDNX are small (e.g., less than 3), then there 

is a risk that )(ˆ 2 RR is no longer accurate—this can influence the efficiency of )(ˆ 2 RR when 

applied as weights for meta-analysis and when effect sizes are evaluated for homogeneity (see 

Hedges et al. 1999).  Unfortunately, few meta-analyses using RR evaluate this limitation; but see 

Schmitz et al. (2000) for a good attempt to assess this bias.   

 

Calculating the variance of a correlated-group RR using a paired t-test statistic 
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If a paired (or repeated measures) t-test is reported in the study, then this t can be used to 

estimate the correlation (r) between TX and CX : 

,
2

)()()(

TC

2
CT

22
T

2
C

SDSD

XXNtSDSD
r






, 

 

(A.1)

where TC NNN  .  Here, 2
CT

2 )( XXNt   of equation (A1) is the variance of CT XX  (Zar 

2010).  Finally, knowing r as defined in (A.1), we can modify rRR)(̂ and avoid calculating r 

altogether with: 

T

r

NNXX

XXNtSDSD

XN

SD

XN

SD
RR

CTC

2
CT

22
T

2
C

2
TT

2
T

2
CC

2
C2 )()()()()(

)(ˆ





 , 

 

(A.2)

Equation (7) of the main text is a simplified form of equation (A.2) due to the paired t-test 

sample sizes among groups being equal ( TC NNN  ). 

 

Derivation of large-sample variances for factorial designs  

There are two important effect sizes that can be extracted from studies with factorial designs, 

ORR and IRR  (see main text).  The variance of ORR described in equation (12) was estimated by 

solving ΣAA where A is a column vector of the derivatives for each variable in the population 

mean version of equation (11): 





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


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

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P
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P
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A
C

A
T

A
C

A
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1111


A , 

 

(A.3)

andΣ is the variance-covariance matrix with the large-sample variances of the population means

A
T , A

C , P
T and P

C of equation (11) on its main diagonal:  











P
C

2P
C

P
T

2P
T

A
C

2A
C

A
T

2A
T )(

,
)(

,
)(

,
)(

diag
NNNN


Σ . 

 

(A.4)
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Likewise, the variance of IRR defined in equation (14) was estimated using the above definedΣ , 

and then solving ΣAA but with the elements of A equaling: 








 


P
C

P
T

A
C

A
T

1111


A , 

 

(A.5)

which are the derivatives of each variable in IRR from equation (13).  Note that equations (11) 

and (13) are approximations of the true mean response ratio—this is why they apply the sample 

means ( X ) and variances ( 2SD ) rather than the population means ( ) and variances ( 2 ) 

described in equation (A3), (A4) and (A5).  

 

Large-sample variance for a correlated factorial design 

The variance for ORR when the factors A and P are correlated by r is:  
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)

with 

This variance assumes that the correlation between factors A and P do not differ among the 

control and treatment effects.  However, if there is reason to believe that they do differ, then the 

correlation coefficient r found in the sub-equations E2 and E4 can be substituted with Tr —the 

correlation between factors A and P for only the treatment effects.  Likewise, the correlation 

between the controls ( Cr ) can be substituted in E1 and E3. 
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Table A1.  Raw data used to calculate an aggregate RR from multiple response ratios extracted 

from an experiment with three correlated traits.  The control (C) and herbivory treatment (T) 

means ( X ) are presented, as well as the correlation coefficients (r) among these traits.  These 

data are found in Agrawal et al. (2008). 

       
 X  (SD)  r 
       
       

traits C T  A B C 
       
       
A (trichomes) 352 (188.1) 192 (148.9)  1.000 –0.164 0.067 
B (% water) 63.2 (7.3) 73.8 (6.6)  –0.164 1.000 –0.315 
C (C-N ratio) 27.7 (10.5) 17.0 (10.5)  0.067 –0.315 1.000 
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Fig. A1.  The large-sample variance-covariance matrices (Σ ) used to describe the statistical 

relationship among the control and treatment means of two response ratios ( A , B ) for three 

experimental designs: (a) two fully independent ; (b) two treatment means with a shared 

control; (c) two with correlated (  ) means, where the off-diagonals are simplified versions of 

the large-sample covariance: T
2
TC

2
CTC //),cov( NN   .  The main diagonal of all 

matrices contain the large-sample variances (see Stuart and Ord 1994) of the four population 

means ( A
C , A

T , B
C , B

T ) estimated by the sample statistics found in RRA and RRB, both defined 
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by equation (1).  The matrix described in (c) assumes that the correlation between the control (C) 

and treatment (T) means are the same ( TC   ).    
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