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Bias and correction for the log response ratio
in ecological meta—analysis

MaRrc J. LAJEUNESSE!

Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620 USA

Abstract.

Ecologists widely use the log response ratio for summarizing the outcomes of

studies for meta-analysis. However, little is known about the sampling distribution of this
effect size estimator. Here I show with a Monte Carlo simulation that the log response ratio is
biased when quantifying the outcome of studies with small sample sizes, and can yield
erroneous variance estimates when the scale of study parameters are near zero. Given these
challenges, I derive and compare two new estimators that help correct this small-sample bias,
and update guidelines and diagnostics for assessing when the response ratio is appropriate for
ecological meta-analysis. These new bias-corrected estimators retain much of the original
utility of the response ratio and are aimed to improve the quality and reliability of inferences
with effect sizes based on the log ratio of two means.
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INTRODUCTION

Effect sizes offer a practical way to summarize the
magnitude and direction of research outcomes, and
when they are combined and compared with meta-
analysis, they also provide the building blocks for
research synthesis (Hunter and Schmidt 1990). One
mainstay for summarizing the outcomes of ecological
experiments is the log response ratio (RR, sometimes
also InR or InRR [Curtis and Wang 1998, Hedges et al.
1999]). This effect size metric quantifies the results of an
experiment as the log-proportional change between the
means (X) of a treatment (T) and control (C) group

Sampling error plays an important role in introducing
variability in experimental outcomes (Hunter and
Schmidt 1990), and therefore a central feature of RR is
its variance

(SDr)?
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(RR) NiX:
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(2)

Here, within-study parameters like the sample sizes (N)
and standard deviations (SD) are used to help quantify
the sampling variability in RR, and as a hallmark of
meta-analysis, this variability gets converted into
weights to help minimize the influence of studies with
low statistical power when analyzing and pooling
multiple study outcomes (Hedges and Olkin 1985).
Experimental design can also introduce variability, and
recently new variances and covariances for RR have
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been developed to help reduce bias when dependent
information is aggregated within and among studies
(Lajeunesse 2011).

Other sources of variability and bias are known for
the response ratio but their extent and impact are far less
understood. For example, inaccuracies in RR will occur
when effect sizes are estimated from experiments with
small sample sizes (Hedges et al. 1999). Surprisingly, this
small-sample issue remains unaddressed; despite the fact
that a large portion of ecological experiments will have
small N (Jennions and Mpller 2003), and that other
effect size metrics are routinely corrected for this type of
bias. Examples of corrected metrics include Hedges” d
(e.g., Hedges 1981, 1982) and the correlation coefficient
(e.g., Olkin and Pratt 1958). Problems also exist with the
sampling distribution of RR and how the variance
estimator of RR (Eq. 2) approximates this distribution.
Under certain conditions, such as when one of the
control or treatment means is near zero, Hedges et al.
(1999) suggested that the distribution of RR is no longer
normal. Given that the variance of RR is an asymptotic
normal approximation (Lajeunesse 2011), any deviation
from normality will destabilize its utility as weights for
meta-analysis. To minimize this problem, Hedges et al.
(1999) offered a simple heuristic adapted from Geary
(1930) to help assess when RR will be normal. However
to date, very few meta-analyses in ecology or elsewhere
have used this diagnostic to assess the accuracy of effect
sizes approximated with RR.

Given that nearly half of all published meta-analyses
in ecology use RR to quantify experimental outcomes
(Nakagawa and Santos 2012, Koricheva and Gurevitch
2014), a critical revision of this metric is needed to help
address issues of bias and variability, and to help
improve the reliability of RR for estimating effect sizes.
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Here, I first establish with a Monte Carlo experiment the
extent of the small-sample bias, and then identify
conditions under which RR is no longer reliable for
effect size estimation. I then develop two new estimators
that help correct RR for small-sample bias, as well as
new variance estimators to improve the estimation of its
sampling distribution. Finally, I evaluate the small-
sample performance and distribution properties of these
new estimators relative to RR, and provide new
guidelines for when they should be applied as effect
sizes for quantifying experimental outcomes.

EXPLORING BIAS IN THE LOG RESPONSE RATIO
AND ITS VARIANCE

Monte Carlo simulation methods

The goal of this simulation is to determine the
accuracy of RR when estimating a true population
effect size (1), and to assess when it is appropriate to use
var(RR) to approximate the variance of RR. The true
population effect, or A = In(ur/pc), is the expected
population value of the log-proportional change be-
tween two independent and normally distributed ()
population means pr and pc with variances 6% and 2.
Here, accuracy is evaluated as bias(RR) = S(RR) — A;
which is the difference between S(RR), the mean from k
= 100000 randomly simulated (S) response ratios for a
given N, and the true underlying effect A. Random
response ratios can be generated by taking the average
(X) and standard deviation (SD) of N random samples
from each pt and pc, separately. Each random sample
(X) can be summarized as X; ~ A(n, o%) with
i =1,...,N. However, when pt and pc are near zero,
random samples from pr and pc can yield negative Xt
and Xc. Negative values cannot be log transformed;
making the calculation of RR impossible. Given that the
goal is to enumerate a full range of put and pc values,
including those near zero when RR is predicted to
deviate from normality (Hedges et al. 1999), an
alternative way to reliably generate non-negative X is
to sample from a lognormal distribution (In4) as
follows: X; ~ In A((In[u] — 0.5In[1 + &°/p?], In[1 4 o*/p?]).
Here, taking the average and variance of samples sizes N
from this distribution will yield Xt and X with the
desired p and o values, as well as the non-negative
properties necessary for calculating RR. Based on this
distribution, a full range of RR and var(RR) were
randomly generated using the X1 and X¢ (and their SDs)
calculated from N samples of p spanning from 0.001 to 8
at 0.25 increments. This range of p was explored for all
possible paired values of each control and treatment
groups. I also assumed unit variances for p and equal N
for both treatment and control groups, and surveyed a
range of small sample sizes typical to ecological studies:
N1+ Nc=4,8, 16, and 32.

The variance and skewness of the simulated RR were
also calculated to determine how well var(RR) approx-
imates the sampling variance of RR, and when this
distribution is expected to deviate from normality.
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Anything above two standard errors of skewness was
deemed non-normal, and following Tabachnick and
Fidell (1996), this non-normal threshold for my
simulations was approximated as 2SE = 2\/67— =
0.01549. Bias of the variance estimator was estimated
as the difference between the mean of the simulated
variance estimator S[var(RR)] and the observed vari-
ance Ss of the simulated RR: bias[var(RR)] =
S[var(RR)]. The observed variance, or S,:(RR), of the
simulated RR represents the best possible prediction of
the sampling variability in RR under controlled
conditions. Further details on the difficulty in charac-
terizing the sampling distribution of RR are found in the
Appendix, and the simulation R script is presented as a
Supplement.

Monte Carlo results on the small-sample performance of
RR and var(RR)

When the treatment mean (Xt) is larger than the
control mean (X¢), RR will estimate a positive effect;
when Xc is larger than X the effect will be negative.
Further, when X1 and X¢ are close to one another the
response ratio will be near zero and estimate a null
effect. However, when the treatment and control means
have small sample sizes (see ranges of N in Fig. 1), RR
will overestimate the expected effect (i.e., have a
positive bias) when the treatment mean is larger than
the control, or will underestimate the effect and have a
negative bias when Xc is larger than Xp. This bias
persists even at moderately large sample sizes (N = 32;
Fig. 1), but appears negligible when RR is predicted to
estimate a null effect (e.g., when X1 and X¢ are close to
one another). The log response ratio (Eq. 1) is therefore
a consistent estimator given that its bias gets minimized
at large sample sizes. More crucially, the overall
magnitude of bias is dependent on whether at least
one of the two means is near zero while the other is
non-zero (Fig. 1). Therefore log-ratio effect sizes
estimated with RR are at the greatest risk of bias
when: (1) the means have small sample sizes, (2) the two
means are not close to one another (e.g., when the
effect is not null), and (3) at least one of the control and
treatment means is near zero.

The variance estimator of RR (Eq. 2) also does not
approximate the predicted variability in RR very well.
In general, var(RR) will underestimate the variance of
RR (Appendix: Fig. Al), and the magnitude of this
underestimation will increase as the treatment and
control means approach zero. This poor performance is
not unusual given that the distribution of ratios and log
ratios are challenging to approximate (see Appendix),
and that var(RR) is an approximation of that variabil-
ity (Hedges et al. 1999). This means that var(RR) will
conditionally only perform well when the distribution
of RR is normal. However, the distribution of RR is
consistently skewed (Appendix: Fig. A2), either to the
right when the control mean is larger than the
treatment mean, or to the left (negative skewness)
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Results from a Monte Carlo simulation exploring bias in the log response ratio (RR) relative to the two new bias-

corrected estimators, RR® and RR>. Positive bias is emphasized in blue (over-estimation of the effect) and negative bias (under-
estimation) in red. Contour lines in light gray indicate effect sizes with bias = |0.01]; values below this range are in white. Sample-
means for treatment (T) and control (C) groups were randomly generated from population means (i) ranging from zero to eight,
and were estimated using a range of small to medium sample sizes (N = Nt + N¢). Monte Carlo results on the skewness of these
estimators, as well as the bias in their variance estimators, are found in the Appendix.

when the opposite is true (i.e., Xr > X¢). Therefore the
greatest risk of applying approximations to the
variance of RR will occur when at least one of two
means is near zero.

Despite this underestimation problem with var(RR),
its overall behavior still achieves a weighting scheme
useful for meta-analysis. Effect sizes with greater
predicted sampling error will get proportionally down-
weighted more heavily than those will less predicted
sampling error. However, when effect sizes are near the
risk area for RR (i.e., when means are close to zero)
their weights will be disproportionally small. This is
due to the rapid increase in var(RR) within the
problematic ranges of p (Appendix: Fig. Al). Further,
this is not an ideal property for weights, as it will
introduce variability among var(RR) that is greater
than predicted by chance.

THEORY AND DEVELOPMENT OF LOG RESPONSE
RATIO ESTIMATORS

As identified with Monte Carlo simulations, RR is a
biased estimator of the log ratio of the treatment and
control population means at small sample sizes. The
expected direction and magnitude of this bias was
determined by taking the difference between the mean of
randomly simulated response ratios for a given N and
the true underlying effect . However, the expected value
(E) of the simulated mean with this small-sample bias
can also be estimated directly. A direct approach is more
practical for calculating effect sizes and developing
corrections. Below I derive two ways to directly calculate
this expected mean and variance, and apply these to
correct the response ratio. These new corrected estima-
tors will be referred to as RR® and RR*. Here, the
superscript A indicates an adjustment to RR based on
the Delta method (Ver Hoef 2012), and X an adjustment
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that applies the Linearity of Expectation rule to the sum
(2) of two normally distributed variables that have been
log transformed. Presented below are abbreviations of
their derivations. Complete derivations are found in the
Appendix.

New estimator based on the Delta method: RR*

Typically for meta-analysis, effect size metrics like RR,
Hedges’ d, and the odds ratio use only first-order
expansions to approximate asymptotic sampling distri-
butions (Hedges 1981, Lajeunesse 2011). However,
calculating higher-order expansions can also be useful
given that they can be used to adjust or correct bias in
the “naive” effect size estimator (such as RR). Here, |
first show how the mean (Eq. 1) and variance (Eq. 2) of
the original RR can be approximated using the
multivariate Delta method, and then extend this
approach to obtain higher-order terms needed for
deriving corrections.

Following Stuart and Ord (1994), the expectation of
the simplest estimator of A based on the first-order
Taylor expansion around the population means pr and
pe of A = In(pr/pc) is approximately

E(RR) ~A+J' (x — p) + err 3)

where the superscript T indicates the transposition of a
matrix, egg is the remainder (i.e., the ignored higher-
order Taylor expansions), p is a column vector of the
population means pr and pe (e.g., p" =[pt, pel, and x is
a vector of the sample means x' = [X, Xc]. Also
included is a Jacobian vector (J) containing all the first-
order partial derivatives of each variable in A (see
Appendix). Solving Eq. 3, and noting that the expecta-
tion of X — p is zero at large sample sizes (e.g., when
sampling error becomes negligible as assumed by the
Law of Large Numbers; Stuart and Ord 1994), we get
the original response ratio (see Appendix). In a parallel
way, we can also apply the multivariate Delta method to
approximate the variance of RR using the Law of
Propagation of Variances equation:

Var(RR) ~ JTVJ + 8var(RR) (4)

where V is the variance—covariance matrix of pr and pc.
Solving Eq. 4, as described in the Appendix, we get the
original variance estimator.

However, for both the expected mean and variance of
the log ratio (Eqgs. 3 and 4, respectively), the remainder
portions egr and &y,(rr) Of the Taylor expansions were
ignored. Here a second-order portion of & can be added
to improve these estimators. The expectation of A with a
second-order Taylor expansion is

B(RR) ~ 7 +37(x — ) + 5 (x ) H(x ) + exa

second-order term
(5)

and the expectation of its variance becomes
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1
ar(RR) ~J'VJ + 5tr[H(VV)H] + &varr)  (6)

[ —
second-order term

with tr indicating the trace of a matrix, and where H is a

Hessian matrix of all the second partial derivatives of A.

These expectations can be used to adjust the RR and its

variance as follows:

RR* = RR — bias(RR) = RR — [E(RR) — 1]  (7)

However, given that we do not know what A will be, or
the population parameters p and 62, we can substitute
the study sample statistics X and (SD)? to approximate
these parameters. Given these terms, substituting the
original RR as an estimate of A, and using the expected
mean of Eq. 5, the small-sample bias corrected
estimator for A based on the Delta method (A)
becomes

A_RR 4L
RR* = RR +

(SDr)*  (SD¢)?

NiXZ NeX?

. (8)

Likewise, applying Eq. 6 with the general form of Eq. 7,
we get its adjusted variance

(SDp)*

NiXy

(SD¢)*

+oC
NeXe

1
var(RR®) = var(RR) + =

. ©)

New estimator based on the Linearity of
Expectation rule: RR*

The expected value of E(RR) can also be calculated
using the Linearity of Expectation rule, which states
that the expected value of a sum of random variables
will equal the sum of their individual expectations.
According to Stuart and Ord (1994), the individual
expected values of pr and pc in terms of In[py] and
In[pc] will each have a mean of E(In[u]) = In[pu] —
0.5In[l + 62/(Nu2)] and variance of var(In[u]) =1n [1 +
&°/(Ny?)]. Using the convenient expression of RR based
the quotient rule of logarithms, the expected mean of
RR becomes E(RR) = E(In[pr]) — E(In[pc]), which has
an expected variance of var(RR) = var(In[pr]) +
var(In[pc]). Finally, applying these expectations to Eq.
7 (as described in the Appendix), we get a new small-
sample bias corrected estimator based on the Linearity
of Expectation rule

X7 + Ny (SDr)?

RRZ :lln _2—2
2 |Xc +Ng'(SDe)

(10)

which has an approximate variance of

var(RR*) = 2 X var(RR)

—In|1+ var(RR) + 55

NiNcXiX2

<SDT)2<SDC)2} )
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FiG. 2. Monte Carlo results comparing the relative efficiency of estimating effect sizes using the response ratio estimators RR,
RRA, and RRZ. Relative efficiencies greater than one (marked in blue) indicate that the numerator estimator is better at estimating
log ratio effect sizes; efficiencies less than one (marked in red) indicate that the denominator estimator is a better effect sizes
estimator. Contour lines in light gray emphasize when the relative efficiently between two estimators is less than 1%. Overall, both
RR2 and RR¥ perform better than RR; with RR” having a slight advantage in estimating effect sizes over RR.

Comparing and ranking the performance of log response
ratio estimators

With an aim to balance variability and bias, I used the
ratio of the mean squared error (MSE) of each response
ratio estimator (0) to compare and rank their pairwise
relative efficiency: eff(04, 05) = MSE(0,)/MSE(dp). If
the relative efficiency (eff) is >1, then the numerator
estimator (éA) has better MSE properties. Having better
mean square error properties is advantageous given that
it indicates a smaller combined variance and squared
bias: MSE(9) = g T [bias(0)].

Relative to the original response ratio, RR* is 5-20%
more efficient at estimating log ratio effects with small
sample sizes (Fig. 2); the efficiency of RR* marks a
similar improvement of 6-18% over RR. When compar-
ing the two bias-corrected estimators, RR? is slightly
more efficient with a 2% to 5% advantage over RR* (Fig.
2). This improved efficiency of the two new estimators

exists despite having slight skews similar to RR
(Appendix: Fig. A2), and having variances that are
comparably deficient as var(RR) when estimating the
predicted variability of log ratios (Appendix: Fig. Al).
Finally, all estimators are unreliable when at least one of
the control and treatment mean is near zero.

Revisiting accuracy diagnostics for response
ratio estimators

Given that RR and var(RR) are not accurate
approximations to the distribution of RR when either
the control or treatment mean is near zero (e.g., Fig. 1),
Hedges et al. (1999) proposed a simple diagnostic to
assess when they can provide correct effects for meta-
analysis. Here, effect sizes are deemed valid and accurate
approximations when the standardized mean of either
the control or treatment group is >3.
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Illustrative examples of using log response ratio (RR) estimators to quantify experimental outcomes based on the means

(X), standard deviations (SD, in parentheses), and sample sizes (N) of control (C) and treatment (T) groups.

Study outcomes

RR effect sizes

) Geary’s ) Geary’s
Study Xc Nc  test Xr Nt test RR RRA RR*
Allouche and 20.344 (2.257) 10 27.81 1.548 (1.305) 10 3.66 —2.576[0.0723] —2.541[0.0748] —2.542 [0.0748]
Gaudin (2001)
Appleton and 0.0438 (0.180) 20  1.07 0.159 (0.091) 20 7.72 1.289 [0.8608]  0.875 [1.2175] 0.991 [1.0932]
Palmer (1988)
Black and Dodson  49.1 (10.752) 10 14.09 36.1 (18.974) 10 6.05 —0.308 [0.0308] —0.297 [0.0311] —0.297 [0.0311]
(1990)
Turner (1997) 0.451 (0.111) 4 7.65 0.347(0.174) 4 375 —0.262[0.0780] —0.238 [0.0801]  —0.239 [0.0800]
Turner and Mont- 1.254 (1.063) 40  7.42 0.003 (0.202) 40 0.09 —6.035[113.362] 50.628 [6536.844] —3.675 [221.968]

gomery (2003)

Notes: All studies compare the outcome of non-lethal predation effects on prey; with controls that were not exposed to any
predatory effects (see Preisser et al. 2007). Also presented is Geary’s test (eq. 13) to validate the accuracy of each effect size. Here
effect sizes derived from Appleton and Palmer (1988) and Turner and Montgomery (2003) should be treated with caution as both
had standardized means <3 (emphasized in boldface type). Variance of effect size is given in square brackets.

X

) VN > 3. (12)
Using 3 as the accuracy boundary was first proposed by
Geary (1930) who determined that unlogged ratios
tended to be normal if the coefficient of variation
(CV) of the denominator was <1/3. Here the inverse of
Eq. 12 is the CV, and 1/3 is the probability that the
denominator can take negative values (Hinkley 1969).
More recent studies on the distribution of ratios suggest
more conservative boundary values: >11.11 (Hayya et
al. 1975), >10 (Kuethe et al. 2000), and >4 (Marsaglia
2006).

Although this diagnostic was not designed for
evaluating problematic cases in log ratios, it still works
reasonably well for identifying RR that are at risk of
providing inaccurate effect sizes. For example, there is a
high likelihood that the diagnostic will flag most of the
problematic cases when the simulated means are near 0,
and when the sample size (N) of the standardized mean
is large (see Appendix: Fig. A3). However, at small
sample sizes, the sampling variability is too large and the
ability of Eq. 12 to detect problematic effects drops
considerably (Appendix: Fig. A3). To improve the
performance of Eq. 12, I suggest a small modification
that includes a small-sample correction to the standard-
ized mean

4N3/2
] >3
()2

With this modified diagnostic, there is a slight 2-3% gain
in confirming the accuracy of effect sizes that have small
sample sizes but lie outside the problematic ranges near
zero (Appendix: Fig. A3). It is also important to
emphasize that RR® and RR* will be more sensitive to
violations of Geary’s rule (Eqgs. 12 and 13). This is
because their corrections themselves require that the
distribution of ratios to be normal (see Appendix).
Finally, it is good practice to use Eqgs. 12 or 13 for
both the control and treatment groups: should at least

X

D (13)

one of two standardized means fail Geary’s test, then
effect sizes calculated with RR, RR?, or RR*® may be at
risk of estimating an incorrect effect and variance. A
meta-analysis can then be used to compare the pooled
effects among the response ratios that passed and failed
Geary’s test; should they differ, then this may provide
some empirical justification for excluding at-risk effect
sizes to help improve inferences with meta-analysis.
Alternatively, I advocate using a sensitivity analysis
where the meta-analytic results from the complete
dataset is compared to those where problematic cases
were excluded. This would provide evidence for the
robustness of the overall model despite the variability
introduced by including potentially inaccurate response
ratios (Lajeunesse 2010).

Hllustrative examples

Preisser et al. (2007) combined and compared the
outcomes of several studies on changes in prey behavior
and fitness in response to predation risk. Here I focus on
five of these studies to briefly illustrate applications of
response ratios (see Table 1); these examples were
purposely selected as helpful references for interpreting
effect sizes. Overall, among the three studies validated
by Geary’s test (eq. 13), there was an average bias
reduction of 4.6% and 4.5% using RR® and RRZ,
respectively. Relative to var(RR*) and var(RR¥), the
variance of RR also underestimated the sampling
variability of these studies. Also presented are effect
sizes that failed Geary’s test (Eq. 13). These should be
interpreted with caution as their study outcomes lie
within the problematic ranges for response ratios (Figs.
1 and A2). In particular, the effect sizes from Turner and
Montgomery (2003) are clearly unusual given that they
are in an entirely different magnitude relative to other
studies (also note the higher sensitivity of RR® and RR*
to these problematic data). These odd effects do
necessarily indicate that the study itself is unusual, but
given the outcome of Geary’s test, they are likely
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inaccurate and indicate that log response ratios are not
adequate to estimate effect sizes with these data.

DiscussioN

I found that the log response ratio is a biased but
consistent effect size estimator, and that the bias-
corrected estimators RR® (Eqs. 8 and 9) and RR*
(Egs. 10 and 11) are improvements over this traditional
metric, in terms of bias reduction and mean square
error. Of these two new effect size estimators, RR is the
most promising as it behaves well under several often-
encountered conditions in experimental ecology. I also
identified a range of conditions for when any effect size
based on log response ratios will be at risk of estimating
inaccurately the effect and predicted variance of that
effect. In particular when the means of the control or
treatment groups are near zero and the coefficients of
variation are large. Therefore, along with RR2, I urge
ecologists to begin validating the accuracy of effect sizes
with Geary’s test (Eq. 13) prior to pooling outcomes
with meta-analysis. Additional guidelines on how to
uphold the accuracy of response ratio estimators are
discussed in the Appendix.

Although RR” and RR* are improvements over RR,
both clearly still have issues estimating the log ratio of
two means and its predicted variance. For example, at
small to moderate sample sizes, both fall short of
removing all the small-sample bias (Fig. 1). This may be
due to the inability of second-order corrections to fully
estimate the rapid (perhaps non-linear) increase in bias
and variance when either the treatment or control means
are near zero. Including additional higher-order correc-
tions using the Taylor expansion method can perhaps
remedy this problem. However, estimators emerging
from these expansions would not be practical for meta-
analysis since they would require additional study
parameters like skewness and kurtosis to reach higher-
order corrections. These study parameters are rarely if
ever reported in the literature, and given the already
difficult challenge of extracting the means and variances
from published studies to compute effect sizes (Lajeu-
nesse and Forbes 2003, Lajeunesse 2013), there is no
need to further exacerbate these problems by imposing
stricter eligibility criteria for study inclusion (Lajeunesse
2010). Different strategies to developing second-order
corrections could also be applied. For example, Edge-
worth expansions could be used to develop new
approximations (van der Vaart 1998). Here, unlike the
Delta method, this approach would make use of the
probability distribution of RR to achieve corrections (see
Appendix). However, much of the intuition and
simplicity of effect sizes is lost when probability
distributions are used to construct estimators. This is
why all effect size metrics used in meta-analysis, despite
their probability distributions being known, continue to
rely on large sample approximations. For example,
Hedges' d and log odds ratio are O(n™') asymptotic
normal estimators (Hedges 1981, Phillips and Holland
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1987), and so are Beale’s (1962) and Tin’s (1965) ratio
estimators.

On a peripheral but relevant note, research synthesis
in medicine also use an independently derived version of
the log response ratio abbreviated as RoM, or the ratio
of arithmetic means (Friedrich et al. 2005, 2008, 2011).
Under this literature, a few interesting caveats have
emerged. For example, in the broader context of
weighting and pooling multiple effect sizes with meta-
analysis, Friedrich et al. (2008) found a small bias
towards null-effects when few RR are aggregated (with
either fixed- or random-effects models), and a small bias
towards non-zero effects when there is large simulated
between-study variance. However, these second-order
sampling properties (synthesis-level error) are compara-
ble to other established effect sizes like Hedges’ d (see
Hedges and Olkin 1985).

A second caveat is that RR can show greater
heterogeneity than effect sizes estimated with Hedges’
d (Friedrich et al. 2011). Hillebrand and Gurevitch
(2014) also found similar variability when comparing
these two estimators using a large dataset of grazing
effects on microalgae. I suspect that one contribution to
RR’s heterogeneity is its greater sensitivity to the
individual sampling errors of each control and treatment
group. Unlike RR, Hedges’ d aims to minimize this type
of sampling error by homogenizing and pooling the SD’s
from these two groups (Hedges 1981). Another potential
contribution to this heterogeneity is the inclusion of
inaccurate RR that fail Geary’s test. These sources of
heterogeneity combined may explain why some ecolog-
ical meta-analyses using both RR and Hedges’ d with the
same study parameters (i.e., X, SD, and N) can yield
different synthesis-level outcomes. Here the increased
variability in RR would influence two key components
that impact inferences with meta-analysis: (1) the
relative weighting of each effect sizes and (2) the
magnitude of the between-study variance component
estimated for random-effects analyses based on these
weights. Future research should aim to address these
issues, with a direction that emphasizes sources of
heterogeneity when estimating log response ratios, and
the outcomes of that heterogeneity on ecological meta-
analysis.
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APPENDIX A

Complete derivation of new estimator based on the Delta method: RR*

The multivariate Delta method is a useful way to approximate the mean and variance of RR by
relying on a (truncated) Taylor series expansion. Typically for meta-analysis, effect size metrics
like RR, Hedges’ d, and the Odds ratio use only first-order expansions to approximate asymptotic
sampling distributions (Hedges 1981; Lajeunesse 2011). However, higher-order expansions are
also useful given that they can be used to adjust or correct bias in the “naive” effect size
estimator (such as RR). Here, I begin with how the mean (Eq. 1) and variance (Eq. 2) of the
original RR described in the main text can be approximated with the Delta method. I then extend
this approach to obtain the higher-order terms necessary for deriving a correction.

Given the challenges of determining the moments of ratios and log-ratios (see below
Sampling distribution of the ratio of two means), the Delta method provides a compromise to
approximate the asymptotic sampling distribution for A. Following Stuart and Ord (1994), the
expectation of the simplest estimator of A based on the first-order Taylor expansion around the
population means gt and pc of A = In(ur/uc) is approximately:

E(RR) = A+ JT(x — p) + €grp, (A.1)
where the superscript T indicates the transposition of a matrix, egg the remainder (i.e., the
ignored higher-order Taylor expansions), # a column vector of the population means pt and ¢
(e.g., uT = [ur, uc]), and x a vector of the sample means xT = [X, Xc]. Also included is a

Jacobian vector (J) containing all the first-order partial derivatives (d) of each variable in A:

"= =l
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Solving Eq. A.1, and noting that the expectation of X — u is zero at large sample sizes (e.g.,
when sampling error becomes negligible as assumed by the Law of Large Numbers; Stuart and

Ord 1994), we get the original formulation of the response ratio:

E(RR) = log [ﬁ] + % — % ~ log [ﬁ] ~ A

In a parallel way, we can also apply the multivariate Delta method to approximate the
variance of RR using the Law of Propagation of Variances equation:
var(RR) = JTV] + €,4rrR)» (A.2)
where V is the variance—covariance matrix of g and p¢ containing their large-sample variances

and zero covariances as follows:

V= O'TZ/NT 0
0 aé/Nc|

Examples of when study parameters are dependent and have non-zero covariances are covered

elsewhere (Lajeunesse 2011). Solving Eq. A.2 we get the variance:

of ot
var(RR) = —5 + —=.
Ntutr  Ncug

When replacing the population parameters u and o2 with their respective sample statistics, X and
(SD)?, we get the original response ratio and variance of Egs. 1 and 2 of the main text. Based on
this approach, RR and var(RR) can be described as first-order approximations of the log ratio of
two means.

However, for both the expected mean and variance of the log ratio (Eqs. A.1 and A.2,
respectively), the remainder portion € of Taylor expansions were ignored. Here we will add the
second-order portion of € to improve these estimators. The expectation of A with a second-order

Taylor expansion is:
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E(RR) ~ 2 +J"(x = ) + 7 (r = i) "H(x = ) + e,

second-order term

(A3)

where H is a Hessian matrix containing all the second partial derivatives (92) of A:

821
H= 022 aMCMT 1/MT 0
- 2 2
821 821 1/p2|
dutuc  0%ud

Solving for Eq. A.3, again assuming that the expectation of X — u will equal zero, but also that

the square of this expectation equals its variance (X — )% = o2 /N, we get:

E(RR)Nlog[uT] [(XC —uc)? (XT—ST)] log[ ] [ac _ dk ] (Ad)

ut HT Ncpd  Nrui
Note that because this second-order approximation did not reduce to A, this corroborates the
Monte Carlo results that RR is biased (Fig. 1 of the main text).
Finally, using the compact matrix notation of Preacher et al. (2007), the approximation of

the variance with a second-order term is:

1
var(RR) = JTV] + Etr[H(VV)H] + Ear(RR)> (A5)

second-order term

with tr indicating the trace of a matrix. Solving Eq. A.5 gives the second-order approximation:

2 242
var(RR) = of =+ o 41 [(UT) +(JZC)4]. (A.6)
Ntui  Ncug 2 [Nfup ~ NEui

Equations A.4 and A.6 both contain the original response ratio and its variance but now also
include an additional (2™ order) term meant to improve the approximation of the expected log
ratio.

The predicted bias of the RR estimator can be used to adjust the original RR as follows:

RR24 = RR — bias(RR) = RR — [E(RR) — A]. (A.7)
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However, given that we do not know what A will be, or the population parameters u and 2, we
can substitute the study sample statistics X and (SD)? to approximate these parameters. Using
the expected mean of Eq. A.4, substituting the original RR as an estimate of A, and consolidating

terms, the small-sample bias corrected estimator for A based on the Delta method (A) becomes:

2| NTX2 NcXE | )

Likewise, applying Eq. A.5 with the general form of Eq. A.7 to adjust the variance we get:

var (RR?) = var(RR) + l[

(A.9)

(SD)* (SDc)4]
> .

2v4 24
NfXT N¢Xc

Complete derivation of new estimator based on the Linearity of Expectation rule: RR*
The expected value of [E(RR) can also be calculated using the Linearity of Expectation rule
which states that the expected value of a sum of random variables, such as A and B, will equal
the sum of their individual expectations (Stuart and Ord 1994), or more formally: E(A + B) =
E(A) + E(B). Applying this rule to our case, and by using a convenient expression of RR based
the quotient rule of logarithms, the expected mean of RR is:

E(RR) = E(In[ur]) — E(In[uc]). (A.10)
According to Stuart and Ord (1994), the individual expected values of yt and p¢ in terms of

In[ur] and In[uc] will have a mean of:
1 o?
E(n[u]) = Infu] - 3In[1+75].
For the purposes of developing an effect size estimator, this expected mean assumes the large-

sample approximation of the variance of a mean (i.e., 62/N). Substituting these expected means

of In[ur] and In[uc] into Eq. A.10, and simplifying terms, we get the expected mean of RR as:
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E(RR) = 21n “T 1 [”T*”T "T] (A.11)

C+NC GC
The Linearity of Expectation rule also applies to variances, but now we must assume that
In[ur] and In[uc] are independent from one another. This assumption of independence was not
needed to derive RR® from Eq. A.4 (Stuart and Ord 1994). Here, the variance of E(RR) from Eq.
A.10 is:
var(RR) = var(Inf[ur]) + var(In[uc)). (A.12)
Again following Stuart and Ord (1994), the variance of the log of a normally distributed variable

will be:
0.2
var(In[u]) = In [1 +——|

and therefore the sum of the variances of In[ur]| and In[uc] will yield the variance of E(RR) as:

var(RR) = In [

] +1n [1 s C] (A.13)

Finally, much like the RR? estimator, we apply the E(RR) of Eq. A.11 and variance of
Eq. A.13 to estimate an adjustment to the original response ratio, and following Eq. A.7 we get a

new small-sample bias corrected estimator based on the Linearity of Expectation rule:

s _ 1, [1+(NXH)71(SP)?| _ 1, [XF+Ng'(SD)?
RR™=RR +7In [1+(Nc)?5)—1(SDC)2 =20 X2+Nc1(sDo)z)’ (A.14)

which has a variance of:

2 2
var(RR*) = 2 var(RR) — In [1 + var(RR) + M]. (A.15)
NN X2X2
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A few tips on up-keeping the accuracy of response ratio estimators

Diagnostics like Egs. 12 and 13 of the main text are important given that they can help identify
when effect sizes provide accurate estimates of study outcomes (Appendix: Fig. A.3). However,
there are other simple ways to uphold the accuracy of RR, RR?, and RR%. One is to make sure
that the means used to estimate effect sizes are in units with a natural zero point (e.g., converting
data expressed in degrees Celsius to degrees Kelvin), and are not adjusted/corrected relative to
other variables (i.e. least square or marginal means). These types of means can yield negative
values for either the control or treatment outcomes, and effect sizes cannot be computed in these
cases because the log of a negative ratio is undefined. Although note that RR* is capable of
computing effect sizes under these situations; but this should still be avoided because the
magnitude of effect will be underestimated with these data. Again, the predicted sampling
distribution of RR, RR?, and RR* will no longer be approximately normal when negative values
are possible for the denominator or numerator of the ratio (see Hinkley 1969; see also below
section: Sampling distribution of ratio and log ratio of two means). It is also important to avoid
using percentages, proportions and counts when estimating effect sizes. These are inappropriate
types of data for RR (as well as the corrected estimators) since its derivation assumes that X and
Xt are from independent and normally distributed populations (Hedges et al. 1999). The odds
ratio family of effect size estimators is more appropriate for these data (Fleiss 1994). Finally,
effect sizes calculated from experiments with unbalanced designs should also be treated with
caution—such as when sample sizes (N) differ considerably between the control and treatment
groups (see Friedrich et al. 2008). However, this is not an issue unique to RR, RR?, and RR%;

most effect size estimators will perform poorly under such conditions.
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Sampling distribution of the ratio of two means
If the denominator of a ratio like R = X /Y is always positive, and X and Y are independent
random variables where i = 1,...,nand j = 1,...,m for X;~N (u, o¥) and Y;~N' (1, oy), then

Geary (1930) and Fieller (1932) defined the probability density function f (x) of this ratio to be:

2 2 —
f(R) = _L _Ruoytnoy exp [_0_5 (M)] (A.16)

T Vem (RZg3+03)3/2 R%Zo%+03
For the purposes of developing and effect size metric (estimator) using the ratio of two

independent but normally distributed (V') means, with now R = X /Y, we can replace the

variances of X and Y in Eq. A.16 with their large sample approximations, 6Zn~! and gZm™1

respectively, to get:

-1

_ 1 Ruoim 4+noin _ [Rn—u]?
fR) = V2r (R203m~1+03n=1)3/2 * eXp[ 0'5( )] (A.17)

262m—14g3n-1
Reoym™+oxn

This probability distribution function is the same as the one reported in the Appendix A of
Hedges et al. (1999). However, they opted to re-arrange Eq. A.17 to simplify the way sample
sizes m and n were presented (i.e., not using their inversed form). Given these differences and

the several typos in Hedges et al. (1999) equation, below is a corrected version of their

probability function:
_ L\/mn(nRualzﬁmna)Z() _ mn[u—Rn]?
fR) = V2m  (nR%03+mo%)3/? 8 exp[ 0.5 (nRZJ§+mJ,2()]‘ (A.18)

The Appendix Figure A4 illustrates the broad variability of the probability distribution of the
unlogged ratio of two means when the denominator is allowed to take on negative values;
unfortunately when this is the case, the predicted probability distribution will not have a clean
closed-form expression (Fenton 1960), and therefore the sampling variance for this distribution

(for all ranges of u and 1) remains undefined.
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FIG. Al. Results from a Monte Carlo simulation exploring bias in the variance estimators of the

log ratio of two means: var (RR), var (RR%), and var (RRY). Interpretation, color coding, and

contour lines are the same as Fig. 1 of the main text.
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FIG. A2. A Monte Carlo simulation comparing the skewness (deviation from Normality) of
randomly simulated log ratio estimators: RR, RR?, and RRZ. A positive skew, emphasized in
green, indicates a distribution with a longer right-tail; whereas a negative skew, emphasized in
brown, indicates a longer left-tail. Following Tabachnick and Fidell (1996), the threshold where
skewness is deemed non-zero was estimated as: £0.01549. The contour line in light grey
emphasizes this threshold.
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FIG. A3. Results from a Monte Carlo simulation exploring the ability of accuracy diagnostics
(Egs. 12 and 13 of the main text) to flag problematic effect sizes based on the log ratio of two
means. Presented are the probabilities of these two diagnostics to identify accurate effect sizes
using Geary’s test of having both standardized means for the treatment and control groups being
greater than three. Probabilities marked in red indicate the likelihood of detecting problematic
effect sizes, and contour lines in black emphasize ranges when 95% of effect sizes are deemed
accurate by the diagnostics (with accurate effect sizes emphasized in white). The methods of
these simulations are the same as described in Fig. 1 of the main text.

N=4 N=8 ~N=16 N=32

0 2 4 6 8 0 2 4 6 8
| | | | | | | | | 8 1.0
3 o E
= 5% L, | ros g
© SD 2 =
)] - 06 >
)
c N 0.4
E } 4NY? N _g
v o= 02 2
S SDl1+4N N o
= — e
Wx_ 0.0
0 2 4 6 8 0 2 4 6 8

control mean (/)



Lajeunesse, M.J. | 11

FIG. A4. The various shapes of distributions of unlogged response ratio’s (a/b) when randomly
simulated at different sample sizes (N) and with differing numerator (a) and denominator (b)
values. Presented are the histograms of 10,000 ratio’s of two random Normals with unit

variances and

means a and b, respectively. Random ratios are inlayed within each histogram.

These shapes include from the top to bottom rows: bimodal with long tails (a = 2, b = 0),
asymmetric with long tails (a = 5/3, b = 3/8), symmetric with long tails (a = 0, b = 1), and
approximately Normal (a = 0, b = 6).
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Log response ratio Monte Carlo simulation and diagnostics.
RR is the original response ratio, and delta-RR and sigma-RR are bias corrected versions.

This script uses two R libraries: moments (L. Komsta: http://cran.r-project.org/web/packages/moments/index.html)
parallel (D. Eddelbuettel: http://cran.r-project.org/web/views/HighPerformanceComputing.html)

S 3 3 9 3 9 Sk

rm(list = 1s())
set.seed (13)

RRsim helper <- function(a, K, step, atotal, btotal, var a, var b, N t, N c) {

# moments: v. 0.13
library (moments) ;

X t <- rep(NA,K); var_t <- rep (NA,K);
X ¢ <- rep(NA,K); var_c <- rep (NA,K);

count <- 0

for(b in seq(0.01, btotal + 0.01, by = step)) {

alist <- data.frame(X = rlnorm(N_t*K, meanlog = log((aAZ)/(sqrt(var_a + a”2))), sdlog = sqrt(log(var_a/(aAZ) + 1.0))), group=rep(l:K, each=N_t)
bList <- data.frame(Y = rlnorm(N_c*K, meanlog = log((b"2)/(sqrt(var_b + b"2))), sdlog = sqrt(log(var_b/(b"2) + 1.0))), group=rep(l:K, each=N_c)
X_t <- tapply(aList$X, list(aList$group), mean); sd_t <- tapply(alList$X, list(alList$group), sd);

X _c <- tapply(bListS$Y, list(bList$group), mean); sd_c <- tapply(bList$Y, list(bList$group), sd);

# RR

RR <- log(X_t / X_c) ## double checked with metawin 8/7/13

var RR <- (sd_t"2)/(N_t * (X_t"2)) + (sd_c”2)/(N_c * (X c*2)) ## double checked with metawin 8/7/13

effects <- data.frame(X t=X t, sd_t=sd_t, N_t=N_t, X c=X ¢, sd_c=sd_c, N_c=N_c, RR=RR, var_RR=var_ RR)

effects <- effects[complete.cases(effects),]

RR_mean <- mean (effects$RR)

RR_var <- var (effects$RR)

RR_skew <- skewness (effects$SRR)

var_ RR_mean <- mean(effects$var_RR)

var RR_var <- var(effects$var_RR)

# delta-RR

delta RR <- effects$RR + 0.5 * ( (effects$sd t"2)/ (effectsSN_t * (effects$X t"2)) - (effectsS$Ssd c”2)/(effectsSN c * (effects$x c2)) )

var delta RR <- effects$var RR + 0.5 * ( (effects$sd t"4)/ ((effectsSN_t"2)* (effects$SX t"4)) + (effects$sd c”4)/((effectsSN_c”2)* (effects$X c™4)) )

delta RR _mean <- mean(delta RR)

delta RR_var <- var(delta_RR)

delta RR_skew <- skewness(delta_RR)
var_delta RR mean <- mean( var_delta RR )
var_delta RR _var <- var( var_delta RR )

# sigma-RR
sigma RR <- 0.5 * log((effects$X t"2 + (effects$sd _t"2)/effectsSN_t)/(effects$X c”2 + (effects$sd c”2)/effectsSN _c))
var_sigma RR <- 2.0 * effects$var RR - log(l.0 + effects$var RR + ((effects$sd_tA2)*(effectsSsd_cAZ))/(effectssN_c*effectssN_t*(effectssx_tAZ)*(effects$X_cA2)))



sigma RR mean <- mean(sigma_ RR)
sigma RR var <- var(sigma_ RR)
sigma_RR_skew <- skewness (sigma_RR)

var sigma RR mean <- mean(var_sigma_ RR)
var sigma RR var <- var(var_sigma RR)

# Geary's diagnostic

std mean a <- effects$X t * sqrt(effectsSN t) /
std mean b <- effects$X c * sqrt(effectsSN c) /
Geary diagnostic <- sum((std mean a >= 3.0) & (s
# updated Geary's diagnostic

std mean a <- (4.0 * effects$X t * effects$N t *
std mean b <- (4.0 * effects$X ¢ * effects$N c *
Geary new_diagnostic <- sum((std mean_a >= 3.0)

# collect results

if (count == 0) {
results <- matrix(c( a,

b,

N t,

N ¢,

var_a,

var_b,

log(a/b),

RR_mean,

RR_var,

RR_skew,

var_RR_mean,

var_RR_var,

delta RR_mean,

delta RR_var,

delta_ RR_skew,

var_delta RR_mean,

var_delta RR_var,

sigma_RR_mean,

sigma_RR_var,

sigma_RR_skew,

var_sigma_RR_mean,

var_sigma_RR_var,

Geary diagnostic,

Geary new_diagnostic), nrow=1l, ncol =

colnames (results) <- c( "a",

"o,

"N t",

"N c",

"var_a",
"var_b",
"log_ab",

"RR mean",
"RR_var",
"RR_skew",
"var_RR_mean",
"var_RR_var",
"delta_ RR mean",
"delta_ RR var",

"delta_ RR_skew",

effects$sd_t
effects$sd_c

td mean b >= 3.0)) / ((length(std mean

(3.0 / 2.0)) / (effects$sd t * ( 1.0
(3.0 / 2.0)) / (effects$sd ¢ * ( 1.0
& (std mean b >= 3.0)) / ((length(std

24, byrow = TRUE);

_b)

+ 4.
+ 4.

mean_b)

+ length(std mean_a))

0 * effects$N t))
0 * effects$N c))

+ length(std mean_a))

/ 2.0)

/ 2.0)



"var_delta_RR_mean",
"var_delta_RR var",
"sigma RR mean",
"sigma RR var",
"sigma RR skew",
"var sigma RR mean",
"var sigma RR var",
"Geary diagnostic",
"Geary new_diagnostic" );

} else {

results <- rbind(results, matrix(c( a,

}

count <- count + 1

}

# alert when simulation is complete
system (paste ('"c:/program files

return (results)

RRsim <- function(K, step,
# parallel: v. 3.0.2
library(parallel)
numCores <- detectCores(logical =
cl <- makeCluster (numCores)

TRUE)

(x86) /videolan/vlc/vlc"',

atotal, btotal, var_a, var_b, N_t, N c,

b,

N t,

N ¢,

var_a,

var b,

log(a/b),

RR_mean,

RR_var,

RR_skew,
var_RR_mean,
var_RR_var,
delta RR mean,
delta RR var,
delta RR_skew,
var_delta_ RR_mean,
var_delta RR_var,
sigma_RR_mean,
sigma_RR_var,
sigma_RR_skew,
var_sigma_RR_mean,
var_sigma_RR_var,
Geary_diagnostic,
Geary new_diagnostic), nrow=1l, ncol =

24, byrow

FileResults Name) {

the a list <- seq(0.01, atotal + 0.01, by = step)

allResults <- parLapply(cl, the a list, RRsim helper, K, step,

stopCluster(cl)

allResultsMerged <- do.call(rbind,
write.table (data.frame (allResultsMerged),

allResults)

file

= FileResults_Name, append = FALSE, quote =

FALSE,

TRUE) ) ;

sep

'C:/Users/lajeunesse/Desktop/CatbirdGrayMew.mp3

atotal, btotal, var_a, var_b, N_t, N_c)

",

na

vlc://quit'),

"NAT,

wait =

row.names

FALSE)

FALSE,

col.names

TRUE)



return (data. frame (allResultsMerged))
}
# a = t (treatment), and b

c (control) | 4, 8, 16, and 32 sample size simulations

system.time (invisible (RRsim(K = 100000, step = 0.25, atotal = 8, btotal = 8, var a = 1.0, var b = 1.0, Nt =2, N c = 2, FileResults Name = "N is 2.txt")))
system.time (invisible (RRsim(K = 100000, step = 0.25, atotal = 8, btotal = 8, var a = 1.0, var b = 1.0, Nt =4, N c = 4, FileResults Name = "N _is 4.txt")))
system.time (invisible (RRsim(K = 100000, step = 0.25, atotal = 8, btotal = 8, var a = 1.0, var b = 1.0, N.t =8, N c 8, FileResults Name = "N_is 8.txt")))
system.time (invisible (RRsim(K = 100000, step = 0.25, atotal = 8, btotal =8, var a = 1.0, var b = 1.0, Nt = 16, N c = 16, FileResults Name = "N is 16.txt")))



