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Abstract. Ecologists widely use the log response ratio for summarizing the outcomes of
studies for meta-analysis. However, little is known about the sampling distribution of this
effect size estimator. Here I show with a Monte Carlo simulation that the log response ratio is
biased when quantifying the outcome of studies with small sample sizes, and can yield
erroneous variance estimates when the scale of study parameters are near zero. Given these
challenges, I derive and compare two new estimators that help correct this small-sample bias,
and update guidelines and diagnostics for assessing when the response ratio is appropriate for
ecological meta-analysis. These new bias-corrected estimators retain much of the original
utility of the response ratio and are aimed to improve the quality and reliability of inferences
with effect sizes based on the log ratio of two means.
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INTRODUCTION

Effect sizes offer a practical way to summarize the

magnitude and direction of research outcomes, and

when they are combined and compared with meta-

analysis, they also provide the building blocks for

research synthesis (Hunter and Schmidt 1990). One

mainstay for summarizing the outcomes of ecological

experiments is the log response ratio (RR, sometimes

also lnR or lnRR [Curtis and Wang 1998, Hedges et al.

1999]). This effect size metric quantifies the results of an

experiment as the log-proportional change between the

means (X̄) of a treatment (T) and control (C) group

RR ¼ lnðX̄T=X̄CÞ: ð1Þ

Sampling error plays an important role in introducing

variability in experimental outcomes (Hunter and

Schmidt 1990), and therefore a central feature of RR is

its variance

varðRRÞ ¼ ðSDTÞ2

NTX̄
2
T

þ ðSDCÞ2

NCX̄
2
C

: ð2Þ

Here, within-study parameters like the sample sizes (N)

and standard deviations (SD) are used to help quantify

the sampling variability in RR, and as a hallmark of

meta-analysis, this variability gets converted into

weights to help minimize the influence of studies with

low statistical power when analyzing and pooling

multiple study outcomes (Hedges and Olkin 1985).

Experimental design can also introduce variability, and

recently new variances and covariances for RR have

been developed to help reduce bias when dependent

information is aggregated within and among studies

(Lajeunesse 2011).

Other sources of variability and bias are known for

the response ratio but their extent and impact are far less

understood. For example, inaccuracies in RR will occur

when effect sizes are estimated from experiments with

small sample sizes (Hedges et al. 1999). Surprisingly, this

small-sample issue remains unaddressed; despite the fact

that a large portion of ecological experiments will have

small N (Jennions and Møller 2003), and that other

effect size metrics are routinely corrected for this type of

bias. Examples of corrected metrics include Hedges’ d

(e.g., Hedges 1981, 1982) and the correlation coefficient

(e.g., Olkin and Pratt 1958). Problems also exist with the

sampling distribution of RR and how the variance

estimator of RR (Eq. 2) approximates this distribution.

Under certain conditions, such as when one of the

control or treatment means is near zero, Hedges et al.

(1999) suggested that the distribution of RR is no longer

normal. Given that the variance of RR is an asymptotic

normal approximation (Lajeunesse 2011), any deviation

from normality will destabilize its utility as weights for

meta-analysis. To minimize this problem, Hedges et al.

(1999) offered a simple heuristic adapted from Geary

(1930) to help assess when RR will be normal. However

to date, very few meta-analyses in ecology or elsewhere

have used this diagnostic to assess the accuracy of effect

sizes approximated with RR.

Given that nearly half of all published meta-analyses

in ecology use RR to quantify experimental outcomes

(Nakagawa and Santos 2012, Koricheva and Gurevitch

2014), a critical revision of this metric is needed to help

address issues of bias and variability, and to help

improve the reliability of RR for estimating effect sizes.
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Here, I first establish with a Monte Carlo experiment the

extent of the small-sample bias, and then identify
conditions under which RR is no longer reliable for

effect size estimation. I then develop two new estimators
that help correct RR for small-sample bias, as well as

new variance estimators to improve the estimation of its
sampling distribution. Finally, I evaluate the small-
sample performance and distribution properties of these

new estimators relative to RR, and provide new
guidelines for when they should be applied as effect

sizes for quantifying experimental outcomes.

EXPLORING BIAS IN THE LOG RESPONSE RATIO

AND ITS VARIANCE

Monte Carlo simulation methods

The goal of this simulation is to determine the
accuracy of RR when estimating a true population

effect size (k), and to assess when it is appropriate to use
var(RR) to approximate the variance of RR. The true
population effect, or k ¼ ln(lT/lC), is the expected

population value of the log-proportional change be-
tween two independent and normally distributed (N)

population means lT and lC with variances r2
T and r2

C.
Here, accuracy is evaluated as bias(RR) ¼ S(RR) � k;
which is the difference between S(RR), the mean from k
¼ 100 000 randomly simulated (S) response ratios for a

given N, and the true underlying effect k. Random
response ratios can be generated by taking the average

(X̄) and standard deviation (SD) of N random samples
from each lT and lC, separately. Each random sample

(X) can be summarized as Xi ; N(l, r2) with
i ¼ 1,. . .,N. However, when lT and lC are near zero,

random samples from lT and lC can yield negative X̄T

and X̄C. Negative values cannot be log transformed;

making the calculation of RR impossible. Given that the
goal is to enumerate a full range of lT and lC values,
including those near zero when RR is predicted to

deviate from normality (Hedges et al. 1999), an
alternative way to reliably generate non-negative X̄ is

to sample from a lognormal distribution (ln N ) as
follows: Xi ; ln N (ln[l]� 0.5ln[1þr2/l2], ln[1þr2/l2]).
Here, taking the average and variance of samples sizes N
from this distribution will yield X̄T and X̄C with the

desired l and r2 values, as well as the non-negative
properties necessary for calculating RR. Based on this

distribution, a full range of RR and var(RR) were
randomly generated using the X̄T and X̄C (and their SDs)

calculated from N samples of l spanning from 0.001 to 8
at 0.25 increments. This range of l was explored for all

possible paired values of each control and treatment
groups. I also assumed unit variances for l and equal N

for both treatment and control groups, and surveyed a
range of small sample sizes typical to ecological studies:
NT þ NC ¼ 4, 8, 16, and 32.

The variance and skewness of the simulated RR were
also calculated to determine how well var(RR) approx-

imates the sampling variance of RR, and when this
distribution is expected to deviate from normality.

Anything above two standard errors of skewness was

deemed non-normal, and following Tabachnick and

Fidell (1996), this non-normal threshold for my

simulations was approximated as 2SE ¼ 2
ffiffiffiffiffiffiffiffi
6=k

p
¼

0.01549. Bias of the variance estimator was estimated

as the difference between the mean of the simulated

variance estimator S[var(RR)] and the observed vari-

ance Sr2 of the simulated RR: bias[var(RR)] ¼
S[var(RR)]. The observed variance, or Sr2ðRRÞ, of the
simulated RR represents the best possible prediction of

the sampling variability in RR under controlled

conditions. Further details on the difficulty in charac-

terizing the sampling distribution of RR are found in the

Appendix, and the simulation R script is presented as a

Supplement.

Monte Carlo results on the small-sample performance of

RR and var(RR)

When the treatment mean (X̄T) is larger than the

control mean (X̄C), RR will estimate a positive effect;

when X̄C is larger than X̄T the effect will be negative.

Further, when X̄T and X̄C are close to one another the

response ratio will be near zero and estimate a null

effect. However, when the treatment and control means

have small sample sizes (see ranges of N in Fig. 1), RR

will overestimate the expected effect (i.e., have a

positive bias) when the treatment mean is larger than

the control, or will underestimate the effect and have a

negative bias when X̄C is larger than X̄T. This bias

persists even at moderately large sample sizes (N ¼ 32;

Fig. 1), but appears negligible when RR is predicted to

estimate a null effect (e.g., when X̄T and X̄C are close to

one another). The log response ratio (Eq. 1) is therefore

a consistent estimator given that its bias gets minimized

at large sample sizes. More crucially, the overall

magnitude of bias is dependent on whether at least

one of the two means is near zero while the other is

non-zero (Fig. 1). Therefore log-ratio effect sizes

estimated with RR are at the greatest risk of bias

when: (1) the means have small sample sizes, (2) the two

means are not close to one another (e.g., when the

effect is not null), and (3) at least one of the control and

treatment means is near zero.

The variance estimator of RR (Eq. 2) also does not

approximate the predicted variability in RR very well.

In general, var(RR) will underestimate the variance of

RR (Appendix: Fig. A1), and the magnitude of this

underestimation will increase as the treatment and

control means approach zero. This poor performance is

not unusual given that the distribution of ratios and log

ratios are challenging to approximate (see Appendix),

and that var(RR) is an approximation of that variabil-

ity (Hedges et al. 1999). This means that var(RR) will

conditionally only perform well when the distribution

of RR is normal. However, the distribution of RR is

consistently skewed (Appendix: Fig. A2), either to the

right when the control mean is larger than the

treatment mean, or to the left (negative skewness)
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when the opposite is true (i.e., X̄T . X̄C). Therefore the

greatest risk of applying approximations to the

variance of RR will occur when at least one of two

means is near zero.

Despite this underestimation problem with var(RR),

its overall behavior still achieves a weighting scheme

useful for meta-analysis. Effect sizes with greater

predicted sampling error will get proportionally down-

weighted more heavily than those will less predicted

sampling error. However, when effect sizes are near the

risk area for RR (i.e., when means are close to zero)

their weights will be disproportionally small. This is

due to the rapid increase in var(RR) within the

problematic ranges of l (Appendix: Fig. A1). Further,

this is not an ideal property for weights, as it will

introduce variability among var(RR) that is greater

than predicted by chance.

THEORY AND DEVELOPMENT OF LOG RESPONSE

RATIO ESTIMATORS

As identified with Monte Carlo simulations, RR is a

biased estimator of the log ratio of the treatment and

control population means at small sample sizes. The

expected direction and magnitude of this bias was

determined by taking the difference between the mean of

randomly simulated response ratios for a given N and

the true underlying effect k. However, the expected value

(E) of the simulated mean with this small-sample bias

can also be estimated directly. A direct approach is more

practical for calculating effect sizes and developing

corrections. Below I derive two ways to directly calculate

this expected mean and variance, and apply these to

correct the response ratio. These new corrected estima-

tors will be referred to as RRD and RRR. Here, the

superscript D indicates an adjustment to RR based on

the Delta method (Ver Hoef 2012), and R an adjustment

FIG. 1. Results from a Monte Carlo simulation exploring bias in the log response ratio (RR) relative to the two new bias-
corrected estimators, RRD and RRR. Positive bias is emphasized in blue (over-estimation of the effect) and negative bias (under-
estimation) in red. Contour lines in light gray indicate effect sizes with bias¼ j0.01j; values below this range are in white. Sample-
means for treatment (T) and control (C) groups were randomly generated from population means (l) ranging from zero to eight,
and were estimated using a range of small to medium sample sizes (N¼NTþNC). Monte Carlo results on the skewness of these
estimators, as well as the bias in their variance estimators, are found in the Appendix.
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that applies the Linearity of Expectation rule to the sum

(R) of two normally distributed variables that have been

log transformed. Presented below are abbreviations of

their derivations. Complete derivations are found in the

Appendix.

New estimator based on the Delta method: RRD

Typically for meta-analysis, effect size metrics like RR,

Hedges’ d, and the odds ratio use only first-order

expansions to approximate asymptotic sampling distri-

butions (Hedges 1981, Lajeunesse 2011). However,

calculating higher-order expansions can also be useful

given that they can be used to adjust or correct bias in

the ‘‘naı̈ve’’ effect size estimator (such as RR). Here, I

first show how the mean (Eq. 1) and variance (Eq. 2) of

the original RR can be approximated using the

multivariate Delta method, and then extend this

approach to obtain higher-order terms needed for

deriving corrections.

Following Stuart and Ord (1994), the expectation of

the simplest estimator of k based on the first-order

Taylor expansion around the population means lT and

lC of k ¼ ln(lT/lC) is approximately

EðRRÞ’ kþ J>ðx� lÞ þ eRR ð3Þ

where the superscript T indicates the transposition of a

matrix, eRR is the remainder (i.e., the ignored higher-

order Taylor expansions), l is a column vector of the

population means lT and lC (e.g., l>¼ [lT, lC], and x is

a vector of the sample means x> ¼ [X̄T, X̄C]. Also

included is a Jacobian vector (J) containing all the first-

order partial derivatives of each variable in k (see

Appendix). Solving Eq. 3, and noting that the expecta-

tion of X̄ � l is zero at large sample sizes (e.g., when

sampling error becomes negligible as assumed by the

Law of Large Numbers; Stuart and Ord 1994), we get

the original response ratio (see Appendix). In a parallel

way, we can also apply the multivariate Delta method to

approximate the variance of RR using the Law of

Propagation of Variances equation:

varðRRÞ’ J>VJþ evarðRRÞ ð4Þ

where V is the variance–covariance matrix of lT and lC.
Solving Eq. 4, as described in the Appendix, we get the

original variance estimator.

However, for both the expected mean and variance of

the log ratio (Eqs. 3 and 4, respectively), the remainder

portions eRR and evar(RR) of the Taylor expansions were

ignored. Here a second-order portion of e can be added

to improve these estimators. The expectation of k with a

second-order Taylor expansion is

EðRRÞ’ kþ J>ðx� lÞ þ 1

2
ðx� lÞ>Hðx� lÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
second-order term

þ eRR

ð5Þ

and the expectation of its variance becomes

varðRRÞ’ J>VJþ 1

2
tr½HðVVÞH�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
second-order term

þ evarðRRÞ ð6Þ

with tr indicating the trace of a matrix, and where H is a

Hessian matrix of all the second partial derivatives of k.
These expectations can be used to adjust the RR and its

variance as follows:

RRadj ¼ RR� biasðRRÞ ¼ RR� ½EðRRÞ � k� ð7Þ

However, given that we do not know what k will be, or

the population parameters l and r2, we can substitute

the study sample statistics X̄ and (SD)2 to approximate

these parameters. Given these terms, substituting the

original RR as an estimate of k, and using the expected

mean of Eq. 5, the small-sample bias corrected

estimator for k based on the Delta method (D)
becomes

RRD ¼ RRþ 1

2

ðSDTÞ2

NTX̄
2
T

� ðSDCÞ2

NCX̄
2
C

" #
: ð8Þ

Likewise, applying Eq. 6 with the general form of Eq. 7,

we get its adjusted variance

varðRRDÞ ¼ varðRRÞ þ 1

2

ðSDTÞ4

N2
TX̄

4
T

þ ðSDCÞ4

N2
CX̄

4
C

" #
: ð9Þ

New estimator based on the Linearity of

Expectation rule: RRR

The expected value of E(RR) can also be calculated

using the Linearity of Expectation rule, which states

that the expected value of a sum of random variables

will equal the sum of their individual expectations.

According to Stuart and Ord (1994), the individual

expected values of lT and lC in terms of ln[lT] and
ln[lC] will each have a mean of E(ln[l]) ¼ ln[l] �
0.5ln[l þ r2/(Nl2)] and variance of var(ln[l]) ¼ ln [1 þ
r2/(Nl2)]. Using the convenient expression of RR based

the quotient rule of logarithms, the expected mean of

RR becomes E(RR) ¼ E(ln[lT]) � E(ln[lC]), which has

an expected variance of var(RR) ¼ var(ln[lT]) þ
var(ln[lC]). Finally, applying these expectations to Eq.

7 (as described in the Appendix), we get a new small-

sample bias corrected estimator based on the Linearity

of Expectation rule

RRR ¼ 1

2
ln

X̄
2
T þ N�1

T ðSDTÞ2

X̄
2
C þ N�1

C ðSDCÞ2

" #
ð10Þ

which has an approximate variance of

varðRRRÞ ¼ 2 3 varðRRÞ

� ln 1þ varðRRÞ þ ðSDTÞ2ðSDCÞ2

NTNCX̄
2
TX̄

2
C

" #
: ð11Þ
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Comparing and ranking the performance of log response

ratio estimators

With an aim to balance variability and bias, I used the

ratio of the mean squared error (MSE) of each response

ratio estimator (ĥ) to compare and rank their pairwise

relative efficiency: eff(ĥA, ĥB) ¼ MSE(ĥA)/MSE(ĥB). If

the relative efficiency (eff ) is .1, then the numerator

estimator (ĥA) has better MSE properties. Having better

mean square error properties is advantageous given that

it indicates a smaller combined variance and squared

bias: MSE(ĥ)¼ r2

SðĥÞ þ [bias(ĥ)]2.

Relative to the original response ratio, RRD is 5–20%
more efficient at estimating log ratio effects with small

sample sizes (Fig. 2); the efficiency of RRR marks a

similar improvement of 6–18% over RR. When compar-

ing the two bias-corrected estimators, RRD is slightly

more efficient with a 2% to 5% advantage over RRR (Fig.

2). This improved efficiency of the two new estimators

exists despite having slight skews similar to RR

(Appendix: Fig. A2), and having variances that are

comparably deficient as var(RR) when estimating the

predicted variability of log ratios (Appendix: Fig. A1).

Finally, all estimators are unreliable when at least one of

the control and treatment mean is near zero.

Revisiting accuracy diagnostics for response

ratio estimators

Given that RR and var(RR) are not accurate

approximations to the distribution of RR when either

the control or treatment mean is near zero (e.g., Fig. 1),

Hedges et al. (1999) proposed a simple diagnostic to

assess when they can provide correct effects for meta-

analysis. Here, effect sizes are deemed valid and accurate

approximations when the standardized mean of either

the control or treatment group is .3.

FIG. 2. Monte Carlo results comparing the relative efficiency of estimating effect sizes using the response ratio estimators RR,
RRD, and RRR. Relative efficiencies greater than one (marked in blue) indicate that the numerator estimator is better at estimating
log ratio effect sizes; efficiencies less than one (marked in red) indicate that the denominator estimator is a better effect sizes
estimator. Contour lines in light gray emphasize when the relative efficiently between two estimators is less than 1%. Overall, both
RRD and RRR perform better than RR; with RRD having a slight advantage in estimating effect sizes over RRR.
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X̄

SD

ffiffiffiffi
N
p
� 3: ð12Þ

Using 3 as the accuracy boundary was first proposed by

Geary (1930) who determined that unlogged ratios

tended to be normal if the coefficient of variation

(CV) of the denominator was �1/3. Here the inverse of

Eq. 12 is the CV, and 1/3 is the probability that the

denominator can take negative values (Hinkley 1969).

More recent studies on the distribution of ratios suggest

more conservative boundary values: �11.11 (Hayya et

al. 1975), �10 (Kuethe et al. 2000), and �4 (Marsaglia

2006).

Although this diagnostic was not designed for

evaluating problematic cases in log ratios, it still works

reasonably well for identifying RR that are at risk of

providing inaccurate effect sizes. For example, there is a

high likelihood that the diagnostic will flag most of the

problematic cases when the simulated means are near 0,

and when the sample size (N) of the standardized mean

is large (see Appendix: Fig. A3). However, at small

sample sizes, the sampling variability is too large and the

ability of Eq. 12 to detect problematic effects drops

considerably (Appendix: Fig. A3). To improve the

performance of Eq. 12, I suggest a small modification

that includes a small-sample correction to the standard-

ized mean

X̄

SD

4N3=2

1þ 4N

� �
� 3: ð13Þ

With this modified diagnostic, there is a slight 2–3% gain

in confirming the accuracy of effect sizes that have small

sample sizes but lie outside the problematic ranges near

zero (Appendix: Fig. A3). It is also important to

emphasize that RRD and RRR will be more sensitive to

violations of Geary’s rule (Eqs. 12 and 13). This is

because their corrections themselves require that the

distribution of ratios to be normal (see Appendix).

Finally, it is good practice to use Eqs. 12 or 13 for

both the control and treatment groups: should at least

one of two standardized means fail Geary’s test, then

effect sizes calculated with RR, RRD, or RRR may be at

risk of estimating an incorrect effect and variance. A

meta-analysis can then be used to compare the pooled

effects among the response ratios that passed and failed

Geary’s test; should they differ, then this may provide

some empirical justification for excluding at-risk effect

sizes to help improve inferences with meta-analysis.

Alternatively, I advocate using a sensitivity analysis

where the meta-analytic results from the complete

dataset is compared to those where problematic cases

were excluded. This would provide evidence for the

robustness of the overall model despite the variability

introduced by including potentially inaccurate response

ratios (Lajeunesse 2010).

Illustrative examples

Preisser et al. (2007) combined and compared the

outcomes of several studies on changes in prey behavior

and fitness in response to predation risk. Here I focus on

five of these studies to briefly illustrate applications of

response ratios (see Table 1); these examples were

purposely selected as helpful references for interpreting

effect sizes. Overall, among the three studies validated

by Geary’s test (eq. 13), there was an average bias

reduction of 4.6% and 4.5% using RRD and RRR,

respectively. Relative to var(RRD) and var(RRR), the

variance of RR also underestimated the sampling

variability of these studies. Also presented are effect

sizes that failed Geary’s test (Eq. 13). These should be

interpreted with caution as their study outcomes lie

within the problematic ranges for response ratios (Figs.

1 and A2). In particular, the effect sizes from Turner and

Montgomery (2003) are clearly unusual given that they

are in an entirely different magnitude relative to other

studies (also note the higher sensitivity of RRD and RRR

to these problematic data). These odd effects do

necessarily indicate that the study itself is unusual, but

given the outcome of Geary’s test, they are likely

TABLE 1. Illustrative examples of using log response ratio (RR) estimators to quantify experimental outcomes based on the means
(X̄), standard deviations (SD, in parentheses), and sample sizes (N) of control (C) and treatment (T) groups.

Study outcomes RR effect sizes

Study X̄C NC

Geary’s
test X̄T NT

Geary’s
test RR RRD RRR

Allouche and
Gaudin (2001)

20.344 (2.257) 10 27.81 1.548 (1.305) 10 3.66 �2.576 [0.0723] �2.541 [0.0748] �2.542 [0.0748]

Appleton and
Palmer (1988)

0.0438 (0.180) 20 1.07 0.159 (0.091) 20 7.72 1.289 [0.8608] 0.875 [1.2175] 0.991 [1.0932]

Black and Dodson
(1990)

49.1 (10.752) 10 14.09 36.1 (18.974) 10 6.05 �0.308 [0.0308] �0.297 [0.0311] �0.297 [0.0311]

Turner (1997) 0.451 (0.111) 4 7.65 0.347 (0.174) 4 3.75 �0.262 [0.0780] �0.238 [0.0801] �0.239 [0.0800]
Turner and Mont-
gomery (2003)

1.254 (1.063) 40 7.42 0.003 (0.202) 40 0.09 �6.035 [113.362] 50.628 [6536.844] �3.675 [221.968]

Notes: All studies compare the outcome of non-lethal predation effects on prey; with controls that were not exposed to any
predatory effects (see Preisser et al. 2007). Also presented is Geary’s test (eq. 13) to validate the accuracy of each effect size. Here
effect sizes derived from Appleton and Palmer (1988) and Turner and Montgomery (2003) should be treated with caution as both
had standardized means ,3 (emphasized in boldface type). Variance of effect size is given in square brackets.
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inaccurate and indicate that log response ratios are not

adequate to estimate effect sizes with these data.

DISCUSSION

I found that the log response ratio is a biased but

consistent effect size estimator, and that the bias-

corrected estimators RRD (Eqs. 8 and 9) and RRR

(Eqs. 10 and 11) are improvements over this traditional

metric, in terms of bias reduction and mean square

error. Of these two new effect size estimators, RRD is the

most promising as it behaves well under several often-

encountered conditions in experimental ecology. I also

identified a range of conditions for when any effect size

based on log response ratios will be at risk of estimating

inaccurately the effect and predicted variance of that

effect. In particular when the means of the control or

treatment groups are near zero and the coefficients of

variation are large. Therefore, along with RRD, I urge

ecologists to begin validating the accuracy of effect sizes

with Geary’s test (Eq. 13) prior to pooling outcomes

with meta-analysis. Additional guidelines on how to

uphold the accuracy of response ratio estimators are

discussed in the Appendix.

Although RRD and RRR are improvements over RR,

both clearly still have issues estimating the log ratio of

two means and its predicted variance. For example, at

small to moderate sample sizes, both fall short of

removing all the small-sample bias (Fig. 1). This may be

due to the inability of second-order corrections to fully

estimate the rapid (perhaps non-linear) increase in bias

and variance when either the treatment or control means

are near zero. Including additional higher-order correc-

tions using the Taylor expansion method can perhaps

remedy this problem. However, estimators emerging

from these expansions would not be practical for meta-

analysis since they would require additional study

parameters like skewness and kurtosis to reach higher-

order corrections. These study parameters are rarely if

ever reported in the literature, and given the already

difficult challenge of extracting the means and variances

from published studies to compute effect sizes (Lajeu-

nesse and Forbes 2003, Lajeunesse 2013), there is no

need to further exacerbate these problems by imposing

stricter eligibility criteria for study inclusion (Lajeunesse

2010). Different strategies to developing second-order

corrections could also be applied. For example, Edge-

worth expansions could be used to develop new

approximations (van der Vaart 1998). Here, unlike the

Delta method, this approach would make use of the

probability distribution of RR to achieve corrections (see

Appendix). However, much of the intuition and

simplicity of effect sizes is lost when probability

distributions are used to construct estimators. This is

why all effect size metrics used in meta-analysis, despite

their probability distributions being known, continue to

rely on large sample approximations. For example,

Hedges’ d and log odds ratio are O(n�1) asymptotic

normal estimators (Hedges 1981, Phillips and Holland

1987), and so are Beale’s (1962) and Tin’s (1965) ratio

estimators.

On a peripheral but relevant note, research synthesis

in medicine also use an independently derived version of
the log response ratio abbreviated as RoM, or the ratio

of arithmetic means (Friedrich et al. 2005, 2008, 2011).

Under this literature, a few interesting caveats have

emerged. For example, in the broader context of
weighting and pooling multiple effect sizes with meta-

analysis, Friedrich et al. (2008) found a small bias

towards null-effects when few RR are aggregated (with

either fixed- or random-effects models), and a small bias

towards non-zero effects when there is large simulated
between-study variance. However, these second-order

sampling properties (synthesis-level error) are compara-

ble to other established effect sizes like Hedges’ d (see

Hedges and Olkin 1985).

A second caveat is that RR can show greater
heterogeneity than effect sizes estimated with Hedges’

d (Friedrich et al. 2011). Hillebrand and Gurevitch

(2014) also found similar variability when comparing

these two estimators using a large dataset of grazing
effects on microalgae. I suspect that one contribution to

RR’s heterogeneity is its greater sensitivity to the

individual sampling errors of each control and treatment

group. Unlike RR, Hedges’ d aims to minimize this type
of sampling error by homogenizing and pooling the SD’s

from these two groups (Hedges 1981). Another potential

contribution to this heterogeneity is the inclusion of

inaccurate RR that fail Geary’s test. These sources of
heterogeneity combined may explain why some ecolog-

ical meta-analyses using both RR and Hedges’ d with the

same study parameters (i.e., X̄, SD, and N) can yield

different synthesis-level outcomes. Here the increased
variability in RR would influence two key components

that impact inferences with meta-analysis: (1) the

relative weighting of each effect sizes and (2) the

magnitude of the between-study variance component

estimated for random-effects analyses based on these
weights. Future research should aim to address these

issues, with a direction that emphasizes sources of

heterogeneity when estimating log response ratios, and

the outcomes of that heterogeneity on ecological meta-
analysis.
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APPENDIX A 

Complete derivation of new estimator based on the Delta method: RR∆ 

The multivariate Delta method is a useful way to approximate the mean and variance of RR by 

relying on a (truncated) Taylor series expansion. Typically for meta-analysis, effect size metrics 

like RR, Hedges’ d, and the Odds ratio use only first-order expansions to approximate asymptotic 

sampling distributions (Hedges 1981; Lajeunesse 2011). However, higher-order expansions are 

also useful given that they can be used to adjust or correct bias in the “naïve” effect size 

estimator (such as RR). Here, I begin with how the mean (Eq. 1) and variance (Eq. 2) of the 

original RR described in the main text can be approximated with the Delta method. I then extend 

this approach to obtain the higher-order terms necessary for deriving a correction. 

  Given the challenges of determining the moments of ratios and log-ratios (see below 

Sampling distribution of the ratio of two means), the Delta method provides a compromise to 

approximate the asymptotic sampling distribution for 𝜆𝜆. Following Stuart and Ord (1994), the 

expectation of the simplest estimator of 𝜆𝜆 based on the first-order Taylor expansion around the 

population means 𝜇𝜇T and 𝜇𝜇C of 𝜆𝜆 = ln(𝜇𝜇T/𝜇𝜇C) is approximately: 

𝔼𝔼(RR) ≈ 𝜆𝜆 + 𝐉𝐉T(𝒙𝒙 − 𝝁𝝁) + 𝜀𝜀RR, (A.1) 

where the superscript T indicates the transposition of a matrix, 𝜀𝜀RR the remainder (i.e., the 

ignored higher-order Taylor expansions), 𝝁𝝁 a column vector of the population means 𝜇𝜇T and 𝜇𝜇C 

(e.g., 𝝁𝝁T = [𝜇𝜇T, 𝜇𝜇C]), and 𝒙𝒙 a vector of the sample means 𝒙𝒙T = [𝑋𝑋�T,𝑋𝑋�C]. Also included is a 

Jacobian vector (𝐉𝐉) containing all the first-order partial derivatives (𝜕𝜕) of each variable in 𝜆𝜆: 

𝐉𝐉T = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇T

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇C

� = � 1
𝜇𝜇T

, −1
𝜇𝜇C
�.  
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Solving Eq. A.1, and noting that the expectation of 𝑋𝑋� − 𝜇𝜇 is zero at large sample sizes (e.g., 

when sampling error becomes negligible as assumed by the Law of Large Numbers; Stuart and 

Ord 1994), we get the original formulation of the response ratio: 

𝔼𝔼(RR) ≈ log �𝜇𝜇T
𝜇𝜇C
� + 𝑋𝑋�T−𝜇𝜇T

𝜇𝜇T
− 𝑋𝑋�C−𝜇𝜇C

𝜇𝜇C
≈ log �𝜇𝜇T

𝜇𝜇C
� ≈ 𝜆𝜆.  

 In a parallel way, we can also apply the multivariate Delta method to approximate the 

variance of RR using the Law of Propagation of Variances equation: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) ≈ 𝐉𝐉T𝐕𝐕𝐉𝐉 + 𝜀𝜀𝑣𝑣𝑎𝑎𝑎𝑎(RR), (A.2) 

where 𝐕𝐕 is the variance–covariance matrix of 𝜇𝜇T and 𝜇𝜇C containing their large-sample variances 

and zero covariances as follows: 

𝐕𝐕 = �
𝜎𝜎T2/𝑁𝑁T 0

0 𝜎𝜎C2/𝑁𝑁C
�.  

Examples of when study parameters are dependent and have non-zero covariances are covered 

elsewhere (Lajeunesse 2011). Solving Eq. A.2 we get the variance: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) ≈ 𝜎𝜎T
2

𝑁𝑁T𝜇𝜇T
2 + 𝜎𝜎C

2

𝑁𝑁C𝜇𝜇C
2.  

When replacing the population parameters 𝜇𝜇 and 𝜎𝜎2 with their respective sample statistics, 𝑋𝑋� and 

(𝑆𝑆𝑆𝑆)2, we get the original response ratio and variance of Eqs. 1 and 2 of the main text. Based on 

this approach, RR and 𝑣𝑣𝑣𝑣𝑣𝑣(RR) can be described as first-order approximations of the log ratio of 

two means. 

 However, for both the expected mean and variance of the log ratio (Eqs. A.1 and A.2, 

respectively), the remainder portion 𝜀𝜀 of Taylor expansions were ignored. Here we will add the 

second-order portion of 𝜀𝜀 to improve these estimators. The expectation of 𝜆𝜆 with a second-order 

Taylor expansion is: 
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𝔼𝔼(RR) ≈ 𝜆𝜆 + 𝐉𝐉T(𝒙𝒙 − 𝝁𝝁) + 1
2

(𝒙𝒙 − 𝝁𝝁)T𝐇𝐇(𝒙𝒙 − 𝝁𝝁)�������������
second-order term

+ 𝜀𝜀RR, (A.3) 

where 𝐇𝐇 is a Hessian matrix containing all the second partial derivatives (∂2) of 𝜆𝜆: 

𝐇𝐇 = �

∂2𝜕𝜕
∂2𝜇𝜇T

2
∂2𝜕𝜕

∂𝜇𝜇C𝜇𝜇T
∂2𝜕𝜕

∂𝜇𝜇T𝜇𝜇C

∂2𝜕𝜕
∂2𝜇𝜇C

2

� = �
−1/𝜇𝜇T2 0

0 1/𝜇𝜇C2
�.  

Solving for Eq. A.3, again assuming that the expectation of 𝑋𝑋� − 𝜇𝜇 will equal zero, but also that 

the square of this expectation equals its variance (𝑋𝑋� − 𝜇𝜇)2 = 𝜎𝜎2/𝑁𝑁, we get: 

𝔼𝔼(RR) ≈ log �𝜇𝜇T
𝜇𝜇C
� + 1

2
�(𝑋𝑋�C−𝜇𝜇C)2

𝜇𝜇C
2 − (𝑋𝑋�T−𝜇𝜇T)2

𝜇𝜇T
2 � ≈ log �𝜇𝜇T

𝜇𝜇C
� + 1

2
� 𝜎𝜎C

2

𝑁𝑁C𝜇𝜇C
2 −

𝜎𝜎T
2

𝑁𝑁T𝜇𝜇T
2�. (A.4) 

Note that because this second-order approximation did not reduce to 𝜆𝜆, this corroborates the 

Monte Carlo results that RR is biased (Fig. 1 of the main text).  

 Finally, using the compact matrix notation of Preacher et al. (2007), the approximation of 

the variance with a second-order term is: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) ≈ 𝐉𝐉T𝐕𝐕𝐉𝐉 + 1
2

tr[𝐇𝐇(𝐕𝐕𝐕𝐕)𝐇𝐇]���������
second-order term

+ 𝜀𝜀𝑣𝑣𝑎𝑎𝑎𝑎(RR), (A.5) 

with tr indicating the trace of a matrix. Solving Eq. A.5 gives the second-order approximation: 

 𝑣𝑣𝑣𝑣𝑣𝑣(RR) ≈ 𝜎𝜎T
2

𝑁𝑁T𝜇𝜇T
2 + 𝜎𝜎C

2

𝑁𝑁C𝜇𝜇C
2 + 1

2
�(𝜎𝜎T

2)2

𝑁𝑁T
2𝜇𝜇T

4 + (𝜎𝜎C
2)2

𝑁𝑁C
2𝜇𝜇C

4�. (A.6) 

Equations A.4 and A.6 both contain the original response ratio and its variance but now also 

include an additional (2nd order) term meant to improve the approximation of the expected log 

ratio.  

 The predicted bias of the RR estimator can be used to adjust the original RR as follows: 

RRadj = RR − 𝑏𝑏𝑏𝑏𝑣𝑣𝑏𝑏(RR) = RR − [𝔼𝔼(RR) − λ]. (A.7) 
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However, given that we do not know what λ will be, or the population parameters 𝜇𝜇 and 𝜎𝜎2, we 

can substitute the study sample statistics 𝑋𝑋� and (SD)2 to approximate these parameters. Using 

the expected mean of Eq. A.4, substituting the original RR as an estimate of λ, and consolidating 

terms, the small-sample bias corrected estimator for λ based on the Delta method (Δ) becomes: 

RRΔ = RR + 1
2
�(SDT)2

𝑁𝑁T𝑋𝑋�T
2 −

(SDC)2

𝑁𝑁C𝑋𝑋�C
2 �. (A.8) 

Likewise, applying Eq. A.5 with the general form of Eq. A.7 to adjust the variance we get: 

𝑣𝑣𝑣𝑣𝑣𝑣(RRΔ) = 𝑣𝑣𝑣𝑣𝑣𝑣(RR) + 1
2
�(SDT)4

𝑁𝑁T
2𝑋𝑋�T

4 + (SDC)4

𝑁𝑁C
2𝑋𝑋�C

4 �. (A.9) 

 

Complete derivation of new estimator based on the Linearity of Expectation rule: RRΣ 

The expected value of 𝔼𝔼(RR) can also be calculated using the Linearity of Expectation rule 

which states that the expected value of a sum of random variables, such as A and B, will equal 

the sum of their individual expectations (Stuart and Ord 1994), or more formally: 𝔼𝔼(A + B) =

𝔼𝔼(A) + 𝔼𝔼(B). Applying this rule to our case, and by using a convenient expression of RR based 

the quotient rule of logarithms, the expected mean of RR is: 

𝔼𝔼(RR) = 𝔼𝔼(ln[𝜇𝜇T]) − 𝔼𝔼(ln[𝜇𝜇C]). (A.10) 

According to Stuart and Ord (1994), the individual expected values of 𝜇𝜇T and 𝜇𝜇C in terms of 

ln[𝜇𝜇T] and ln[𝜇𝜇C] will have a mean of: 

𝔼𝔼(ln[𝜇𝜇]) = ln[𝜇𝜇] − 1
2

ln �1 + σ2

𝑁𝑁𝜇𝜇2
�.  

For the purposes of developing an effect size estimator, this expected mean assumes the large-

sample approximation of the variance of a mean (i.e., σ2/𝑁𝑁). Substituting these expected means 

of ln[𝜇𝜇T] and ln[𝜇𝜇C] into Eq. A.10, and simplifying terms, we get the expected mean of RR as: 
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𝔼𝔼(RR) = 2 ln �𝜇𝜇T
𝜇𝜇C
� − 1

2
ln �𝜇𝜇T

2+𝑁𝑁T
−1σT

2

𝜇𝜇C
2+𝑁𝑁C

−1σC
2�. (A.11) 

 The Linearity of Expectation rule also applies to variances, but now we must assume that 

ln[𝜇𝜇T] and ln[𝜇𝜇C] are independent from one another. This assumption of independence was not 

needed to derive RRΔ from Eq. A.4 (Stuart and Ord 1994). Here, the variance of 𝔼𝔼(RR) from Eq. 

A.10 is: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) = 𝑣𝑣𝑣𝑣𝑣𝑣(ln[𝜇𝜇T]) + 𝑣𝑣𝑣𝑣𝑣𝑣( ln[𝜇𝜇C]). (A.12) 

Again following Stuart and Ord (1994), the variance of the log of a normally distributed variable 

will be: 

𝑣𝑣𝑣𝑣𝑣𝑣(ln[µ]) = ln �1 + σ2

𝑁𝑁𝜇𝜇2
�,  

and therefore the sum of the variances of ln[𝜇𝜇T] and ln[𝜇𝜇C] will yield the variance of 𝔼𝔼(RR) as: 

𝑣𝑣𝑣𝑣𝑣𝑣(RR) = ln �1 + σT
2

𝑁𝑁T𝜇𝜇T
2� + ln �1 + σC

2

𝑁𝑁C𝜇𝜇C
2�.  (A.13) 

 Finally, much like the RRΔ estimator, we apply the 𝔼𝔼(RR) of Eq. A.11 and variance of 

Eq. A.13 to estimate an adjustment to the original response ratio, and following Eq. A.7 we get a 

new small-sample bias corrected estimator based on the Linearity of Expectation rule: 

RRΣ = RR + 1
2

ln �1+(𝑁𝑁T𝑋𝑋�T
2)−1(SDT)2

1+(𝑁𝑁C𝑋𝑋�C
2)−1(SDC)2

� = 1
2

ln �𝑋𝑋
�T
2+𝑁𝑁T

−1(SDT)2

𝑋𝑋�C
2+𝑁𝑁C

−1(SDC)2
�, (A.14) 

which has a variance of:  

𝑣𝑣𝑣𝑣𝑣𝑣(RRΣ) = 2 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣(RR) − ln �1 + 𝑣𝑣𝑣𝑣𝑣𝑣(RR) + (SDT)2(SDC)2

𝑁𝑁T𝑁𝑁C𝑋𝑋�T
2𝑋𝑋�C

2 �. (A.15) 
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A few tips on up-keeping the accuracy of response ratio estimators 

Diagnostics like Eqs. 12 and 13 of the main text are important given that they can help identify 

when effect sizes provide accurate estimates of study outcomes (Appendix: Fig. A.3). However, 

there are other simple ways to uphold the accuracy of RR, RRΔ, and RRΣ. One is to make sure 

that the means used to estimate effect sizes are in units with a natural zero point (e.g., converting 

data expressed in degrees Celsius to degrees Kelvin), and are not adjusted/corrected relative to 

other variables (i.e. least square or marginal means). These types of means can yield negative 

values for either the control or treatment outcomes, and effect sizes cannot be computed in these 

cases because the log of a negative ratio is undefined. Although note that RRΣ is capable of 

computing effect sizes under these situations; but this should still be avoided because the 

magnitude of effect will be underestimated with these data. Again, the predicted sampling 

distribution of RR, RRΔ, and RRΣ will no longer be approximately normal when negative values 

are possible for the denominator or numerator of the ratio (see Hinkley 1969; see also below 

section: Sampling distribution of ratio and log ratio of two means). It is also important to avoid 

using percentages, proportions and counts when estimating effect sizes. These are inappropriate 

types of data for RR (as well as the corrected estimators) since its derivation assumes that 𝑋𝑋�C and 

𝑋𝑋�T are from independent and normally distributed populations (Hedges et al. 1999). The odds 

ratio family of effect size estimators is more appropriate for these data (Fleiss 1994). Finally, 

effect sizes calculated from experiments with unbalanced designs should also be treated with 

caution—such as when sample sizes (𝑁𝑁) differ considerably between the control and treatment 

groups (see Friedrich et al. 2008). However, this is not an issue unique to RR, RRΔ, and RRΣ; 

most effect size estimators will perform poorly under such conditions.   
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Sampling distribution of the ratio of two means 

If the denominator of a ratio like 𝑅𝑅 = 𝑋𝑋/𝑌𝑌 is always positive, and 𝑋𝑋 and 𝑌𝑌 are independent 

random variables where 𝑏𝑏 = 1, … ,𝑛𝑛 and 𝑗𝑗 = 1, … ,𝑚𝑚 for 𝑋𝑋𝑖𝑖~𝒩𝒩(𝜇𝜇,𝜎𝜎𝑋𝑋2) and 𝑌𝑌𝑗𝑗~𝒩𝒩(𝜂𝜂,𝜎𝜎𝑌𝑌2), then 

Geary (1930) and Fieller (1932) defined the probability density function 𝑓𝑓(𝑥𝑥) of this ratio to be: 

𝑓𝑓(𝑅𝑅) = 1
√2𝜋𝜋

𝑅𝑅𝜇𝜇𝜎𝜎𝑌𝑌
2+𝜂𝜂𝜎𝜎𝑋𝑋

2

(𝑅𝑅2𝜎𝜎𝑌𝑌
2+𝜎𝜎𝑋𝑋

2)3/2  × exp �−0.5 � [𝑅𝑅𝜂𝜂−𝜇𝜇]2

𝑅𝑅2𝜎𝜎𝑌𝑌
2+𝜎𝜎𝑋𝑋

2��. (A.16) 

For the purposes of developing and effect size metric (estimator) using the ratio of two 

independent but normally distributed (𝒩𝒩) means, with now 𝑅𝑅 = 𝑋𝑋�/𝑌𝑌�, we can replace the 

variances of 𝑋𝑋 and 𝑌𝑌 in Eq. A.16 with their large sample approximations, 𝜎𝜎𝑋𝑋2𝑛𝑛−1 and 𝜎𝜎𝑌𝑌2𝑚𝑚−1 

respectively, to get: 

𝑓𝑓(𝑅𝑅) = 1
√2𝜋𝜋

𝑅𝑅𝜇𝜇𝜎𝜎𝑌𝑌
2𝑚𝑚−1+𝜂𝜂𝜎𝜎𝑋𝑋

2𝑛𝑛−1

(𝑅𝑅2𝜎𝜎𝑌𝑌
2𝑚𝑚−1+𝜎𝜎𝑋𝑋

2𝑛𝑛−1)3/2  × exp �−0.5 � [𝑅𝑅𝜂𝜂−𝜇𝜇]2

𝑅𝑅2𝜎𝜎𝑌𝑌
2𝑚𝑚−1+𝜎𝜎𝑋𝑋

2𝑛𝑛−1
��. (A.17) 

This probability distribution function is the same as the one reported in the Appendix A of 

Hedges et al. (1999). However, they opted to re-arrange Eq. A.17 to simplify the way sample 

sizes 𝑚𝑚 and 𝑛𝑛 were presented (i.e., not using their inversed form). Given these differences and 

the several typos in Hedges et al. (1999) equation, below is a corrected version of their 

probability function: 

𝑓𝑓(𝑅𝑅) = 1
√2𝜋𝜋

√𝑚𝑚𝑛𝑛(𝑛𝑛𝑅𝑅𝜇𝜇𝜎𝜎𝑌𝑌
2+𝑚𝑚𝜂𝜂𝜎𝜎𝑋𝑋

2)
(𝑛𝑛𝑅𝑅2𝜎𝜎𝑌𝑌

2+𝑚𝑚𝜎𝜎𝑋𝑋
2)3/2  × exp �−0.5 � 𝑚𝑚𝑛𝑛[𝜇𝜇−𝑅𝑅𝜂𝜂]2

𝑛𝑛𝑅𝑅2𝜎𝜎𝑌𝑌
2+𝑚𝑚𝜎𝜎𝑋𝑋

2��. (A.18) 

The Appendix Figure A4 illustrates the broad variability of the probability distribution of the 

unlogged ratio of two means when the denominator is allowed to take on negative values; 

unfortunately when this is the case, the predicted probability distribution will not have a clean 

closed-form expression (Fenton 1960), and therefore the sampling variance for this distribution 

(for all ranges of μ and 𝜂𝜂) remains undefined.  
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FIG. A1. Results from a Monte Carlo simulation exploring bias in the variance estimators of the 

log ratio of two means: 𝑣𝑣𝑣𝑣𝑣𝑣(RR), 𝑣𝑣𝑣𝑣𝑣𝑣(RRΔ), and 𝑣𝑣𝑣𝑣𝑣𝑣(RRΣ). Interpretation, color coding, and 

contour lines are the same as Fig. 1 of the main text.   

  

0
2
4
6
8

0 2 4 6 8 0 2 4 6 8

0
2
4
6
8

0
2
4
6
8

0 2 4 6 8 0 2 4 6 8

-0.4

-0.2

0.0

0.2

0.4

va
r(

RR
)

va
r(

RR
∆ )

va
r(

RR
Σ )

N = 4 N = 8 N = 16

tr
ea

tm
en

t m
ea

n 
(µ

T)

bi
as

control mean (µC)

N = 32



Lajeunesse, M.J. | 9 
 

 

FIG. A2. A Monte Carlo simulation comparing the skewness (deviation from Normality) of 
randomly simulated log ratio estimators: RR, RRΔ, and RRΣ. A positive skew, emphasized in 
green, indicates a distribution with a longer right-tail; whereas a negative skew, emphasized in 
brown, indicates a longer left-tail. Following Tabachnick and Fidell (1996), the threshold where 
skewness is deemed non-zero was estimated as: ±0.01549. The contour line in light grey 
emphasizes this threshold.  
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FIG. A3. Results from a Monte Carlo simulation exploring the ability of accuracy diagnostics 
(Eqs. 12 and 13 of the main text) to flag problematic effect sizes based on the log ratio of two 
means. Presented are the probabilities of these two diagnostics to identify accurate effect sizes 
using Geary’s test of having both standardized means for the treatment and control groups being 
greater than three. Probabilities marked in red indicate the likelihood of detecting problematic 
effect sizes, and contour lines in black emphasize ranges when 95% of effect sizes are deemed 
accurate by the diagnostics (with accurate effect sizes emphasized in white). The methods of 
these simulations are the same as described in Fig. 1 of the main text.    
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FIG. A4. The various shapes of distributions of unlogged response ratio’s (𝑣𝑣/𝑏𝑏) when randomly 
simulated at different sample sizes (𝑁𝑁) and with differing numerator (𝑣𝑣) and denominator (𝑏𝑏) 
values. Presented are the histograms of 10,000 ratio’s of two random Normals with unit 
variances and means 𝑣𝑣 and 𝑏𝑏, respectively. Random ratios are inlayed within each histogram. 
These shapes include from the top to bottom rows: bimodal with long tails (𝑣𝑣 = 2, 𝑏𝑏 = 0), 
asymmetric with long tails (𝑣𝑣 = 5/3, 𝑏𝑏 = 3/8), symmetric with long tails (𝑣𝑣 = 0, 𝑏𝑏 = 1), and 
approximately Normal (𝑣𝑣 = 0, 𝑏𝑏 = 6).  
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# M.J. Lajeunesse, University of South Florida, 11/26/14, lajeunesse@usf.edu 

# 

# Log response ratio Monte Carlo simulation and diagnostics. 

# RR is the original response ratio, and delta-RR and sigma-RR are bias corrected versions. 

# 

# This script uses two R libraries: moments (L. Komsta: http://cran.r-project.org/web/packages/moments/index.html)  

#                                   parallel (D. Eddelbuettel: http://cran.r-project.org/web/views/HighPerformanceComputing.html) 

 

rm(list = ls()) 

set.seed(13) 

 

RRsim_helper <- function(a, K, step, atotal, btotal, var_a, var_b, N_t, N_c) { 

   

  # moments: v. 0.13 

  library(moments);  

   

  X_t <- rep(NA,K); var_t <- rep(NA,K); 

  X_c <- rep(NA,K); var_c <- rep(NA,K); 

   

  count <- 0 

   

  for(b in seq(0.01, btotal + 0.01, by = step)) {  

     

    aList <- data.frame(X = rlnorm(N_t*K, meanlog = log((a^2)/(sqrt(var_a + a^2))), sdlog = sqrt(log(var_a/(a^2) + 1.0))), group=rep(1:K, each=N_t))   

    bList <- data.frame(Y = rlnorm(N_c*K, meanlog = log((b^2)/(sqrt(var_b + b^2))), sdlog = sqrt(log(var_b/(b^2) + 1.0))), group=rep(1:K, each=N_c))  

     

    X_t <- tapply(aList$X, list(aList$group), mean); sd_t <- tapply(aList$X, list(aList$group), sd); 

    X_c <- tapply(bList$Y, list(bList$group), mean); sd_c <- tapply(bList$Y, list(bList$group), sd); 

     

  

    # RR 

    RR <- log(X_t / X_c) ## double checked with metawin 8/7/13 

    var_RR <- (sd_t^2)/(N_t * (X_t^2)) + (sd_c^2)/(N_c * (X_c^2))  ## double checked with metawin 8/7/13 

     

    effects <- data.frame(X_t=X_t, sd_t=sd_t, N_t=N_t, X_c=X_c, sd_c=sd_c, N_c=N_c, RR=RR, var_RR=var_RR) 

    effects <- effects[complete.cases(effects),] 

   

    RR_mean <- mean(effects$RR) 

    RR_var <- var(effects$RR) 

    RR_skew <- skewness(effects$RR) 

    var_RR_mean <- mean(effects$var_RR) 

    var_RR_var <- var(effects$var_RR)  

 

 

    # delta-RR 

    delta_RR <- effects$RR + 0.5 * ( (effects$sd_t^2)/(effects$N_t * (effects$X_t^2)) - (effects$sd_c^2)/(effects$N_c * (effects$X_c^2)) ) 

    var_delta_RR <- effects$var_RR + 0.5 * ( (effects$sd_t^4)/((effects$N_t^2)*(effects$X_t^4)) + (effects$sd_c^4)/((effects$N_c^2)*(effects$X_c^4)) ) 

 

    delta_RR_mean <- mean(delta_RR) 

    delta_RR_var <- var(delta_RR) 

    delta_RR_skew <- skewness(delta_RR) 

    var_delta_RR_mean <- mean( var_delta_RR ) 

    var_delta_RR_var <- var( var_delta_RR )   

 

 

    # sigma-RR     

    sigma_RR <- 0.5 * log((effects$X_t^2 + (effects$sd_t^2)/effects$N_t)/(effects$X_c^2 + (effects$sd_c^2)/effects$N_c)) 

    var_sigma_RR <- 2.0 * effects$var_RR - log(1.0 + effects$var_RR + ((effects$sd_t^2)*(effects$sd_c^2))/(effects$N_c*effects$N_t*(effects$X_t^2)*(effects$X_c^2))) 



   

    sigma_RR_mean <- mean(sigma_RR) 

    sigma_RR_var <- var(sigma_RR) 

    sigma_RR_skew <- skewness(sigma_RR) 

    var_sigma_RR_mean <- mean(var_sigma_RR) 

    var_sigma_RR_var <- var(var_sigma_RR) 

 

    # Geary's diagnostic 

    std_mean_a <- effects$X_t * sqrt(effects$N_t) / effects$sd_t  

    std_mean_b <- effects$X_c * sqrt(effects$N_c) / effects$sd_c  

    Geary_diagnostic <- sum((std_mean_a >= 3.0) & (std_mean_b >= 3.0)) / ((length(std_mean_b) + length(std_mean_a)) / 2.0) 

 

    # updated Geary's diagnostic 

    std_mean_a <- (4.0 * effects$X_t * effects$N_t ^ (3.0 / 2.0)) / (effects$sd_t * ( 1.0 + 4.0 * effects$N_t)) 

    std_mean_b <- (4.0 * effects$X_c * effects$N_c ^ (3.0 / 2.0)) / (effects$sd_c * ( 1.0 + 4.0 * effects$N_c))  

    Geary_new_diagnostic <- sum((std_mean_a >= 3.0) & (std_mean_b >= 3.0)) / ((length(std_mean_b) + length(std_mean_a)) / 2.0) 

 

    # collect results 

    if(count == 0) { 

      results <- matrix(c( a,  

    b,  

    N_t,  

    N_c, 

    var_a, 

    var_b, 

    log(a/b), 

    RR_mean, 

    RR_var, 

    RR_skew, 

    var_RR_mean, 

    var_RR_var,  

    delta_RR_mean, 

    delta_RR_var, 

    delta_RR_skew, 

    var_delta_RR_mean, 

    var_delta_RR_var,   

    sigma_RR_mean, 

    sigma_RR_var, 

    sigma_RR_skew, 

    var_sigma_RR_mean, 

    var_sigma_RR_var, 

    Geary_diagnostic, 

    Geary_new_diagnostic), nrow=1, ncol = 24, byrow = TRUE); 

      colnames(results) <- c( "a",  

    "b",  

    "N_t",  

    "N_c", 

    "var_a", 

    "var_b", 

    "log_ab", 

    "RR_mean", 

    "RR_var", 

    "RR_skew", 

    "var_RR_mean", 

    "var_RR_var",  

    "delta_RR_mean", 

    "delta_RR_var", 

    "delta_RR_skew", 



    "var_delta_RR_mean", 

    "var_delta_RR_var",   

    "sigma_RR_mean", 

    "sigma_RR_var", 

    "sigma_RR_skew", 

    "var_sigma_RR_mean", 

    "var_sigma_RR_var", 

    "Geary_diagnostic", 

    "Geary_new_diagnostic" ); 

    } else { 

      results <- rbind(results, matrix(c( a,  

      b,  

      N_t,  

      N_c, 

      var_a, 

      var_b, 

      log(a/b), 

      RR_mean, 

      RR_var, 

      RR_skew, 

      var_RR_mean, 

      var_RR_var,  

      delta_RR_mean, 

      delta_RR_var, 

      delta_RR_skew, 

      var_delta_RR_mean, 

      var_delta_RR_var,   

      sigma_RR_mean, 

      sigma_RR_var, 

      sigma_RR_skew, 

      var_sigma_RR_mean, 

      var_sigma_RR_var, 

      Geary_diagnostic, 

      Geary_new_diagnostic), nrow=1, ncol = 24, byrow = TRUE));  

      } 

      count <- count + 1 

    } 

   

    # alert when simulation is complete 

    system(paste('"c:/program files (x86)/videolan/vlc/vlc"', 'C:/Users/lajeunesse/Desktop/CatbirdGrayMew.mp3 vlc://quit'), wait = FALSE) 

 

    return(results) 

} 

 

 

RRsim <- function(K, step, atotal, btotal, var_a, var_b, N_t, N_c, FileResults_Name) { 

 

    # parallel: v. 3.0.2 

    library(parallel)  

    numCores <- detectCores(logical = TRUE) 

    cl <- makeCluster(numCores) 

     the_a_list <- seq(0.01, atotal + 0.01, by = step) 

     allResults <- parLapply(cl, the_a_list, RRsim_helper, K, step, atotal, btotal, var_a, var_b, N_t, N_c) 

    stopCluster(cl) 

        

    allResultsMerged <- do.call(rbind, allResults) 

    write.table(data.frame(allResultsMerged), file = FileResults_Name, append = FALSE, quote = FALSE, sep = "\t", na = "NA", row.names = FALSE, col.names = TRUE) 

 



    return(data.frame(allResultsMerged)) 

} 

 

# a = t (treatment), and b = c (control) | 4, 8, 16, and 32 sample size simulations 

system.time(invisible(RRsim(K = 100000, step = 0.25, atotal = 8, btotal = 8, var_a = 1.0, var_b = 1.0, N_t = 2, N_c = 2, FileResults_Name = "N_is_2.txt"))) 

system.time(invisible(RRsim(K = 100000, step = 0.25, atotal = 8, btotal = 8, var_a = 1.0, var_b = 1.0, N_t = 4, N_c = 4, FileResults_Name = "N_is_4.txt"))) 

system.time(invisible(RRsim(K = 100000, step = 0.25, atotal = 8, btotal = 8, var_a = 1.0, var_b = 1.0, N_t = 8, N_c = 8, FileResults_Name = "N_is_8.txt"))) 

system.time(invisible(RRsim(K = 100000, step = 0.25, atotal = 8, btotal = 8, var_a = 1.0, var_b = 1.0, N_t = 16, N_c = 16, FileResults_Name = "N_is_16.txt"))) 


