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Summary

1. The R package ecosystem is rich in tools for the statistics of meta-analysis. However, there are few resources

available to facilitate research synthesis as a whole.

2. Here, I present the METAGEAR package for R. It is a comprehensive, multifunctional toolbox with capabilities

aimed to cover much of the research synthesis taxonomy: from applying a systematic review approach to objec-

tively assemble and screen the literature, to extracting data from studies, and to finally summarize and analyse

these data with the statistics of meta-analysis.

3. Current functionalities of METAGEAR include the following: an abstract screener GUI to efficiently sieve biblio-

graphic information from large numbers of candidate studies; tools to assign screening effort across multiple col-

laborators/reviewers and to assess inter-reviewer reliability using kappa statistics; PDF downloader to automate

the retrieval of journal articles from online data bases; automated data extractions from scatter-plots, box-plots

and bar-plots; PRISMA flow diagrams; simple imputation tools to fill gaps in incomplete or missing study

parameters; generation of random-effects sizes for Hedges’ d, log response ratio, odds ratio and correlation coef-

ficients for Monte Carlo experiments; covariance equations for modelling dependencies among multiple effect

sizes (e.g. with a common control, phylogenetic correlations); and finally, summaries that replicate analyses and

outputs fromwidely used but no longer updatedmeta-analysis software.

4. Research synthesis practices are vital to many disciplines in the sciences, including ecology and evolutionary

biology, and METAGEAR aims to enrich the scope, quality and reproducibility of what can be achieved with the

systematic review andmeta-analysis of research outcomes.

Key-words: data extraction and retrieval, effect sizes, meta-analysis, MetaWin, quantitative

reviews, research synthesis, systematic review

Introduction

Critical goals to research synthesis practices are to generate

robust, aggregate views of accumulated research findings

(Hunter & Schmidt 2004), and to explore sources of variability

in that research (Lajeunesse 2010; Jennions, Lortie & Kori-

cheva 2013a). Ideally, these goals are achieved by pairing sys-

tematic review methods with the statistics of meta-analysis to

yield high-quality syntheses. For example, a systematic review

is first used to carefully plan and implement a strategy to locate

studies, assess their eligibility and extract relevant research

findings in a repeatable and transparent way (Khan et al.

2003; Pullin & Stewart 2006). A meta-analysis is then used to

statistically model sources of variability within and between

studies with the aim to quantitatively weight and aggregate

their findings (Koricheva, Gurevitch & Mengersen 2013).

Although this taxonomy of practices is meant to produce sci-

entifically explicit and defensible overviews of research, it is

also accompanied by a variety of implementation challenges.

For example, the number and complexity of tasks involved in

generating a high-quality synthesis require a diverse combina-

tion of software tools – which are numerous and growing due

to broad interdisciplinary interests in research synthesis

(reviewed by Schmid et al. 2013). This diversity of tools can

reduce efforts to make synthesis more repeatable and transpar-

ent, given that it can yield mixed standards for solving com-

mon problems with the screening, extraction and analysis of

study outcomes (Bayliss &Beyer 2015).

Here, I introduce METAGEAR, an R package aimed at improv-

ing the reproducibility of systematic reviews andmeta-analysis.

It is a comprehensive toolbox that spans the entire research

synthesis taxonomy, and supports a large diversity of function-

alities to help screen abstracts, download articles, extract data

from figures and model dependencies within and among effect

sizes, and various other tools to improve the quality of statis-

tics used in meta-analysis (Table 1). It is also meant to assist

with the management of large collaborative projects by offer-

ing tools to help distributework effort and to assess the reliabil-

ity of that effort (Cohen 1960). Much of METAGEAR’s toolbox

arose from teaching research synthesis and participating in

large projects where tasks are often distributed amongmultiple

individuals with various skill sets, experience, access to*Correspondence author. E-mail: lajeunesse@usf.edu
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different computing platforms (e.g. Windows and Mac), and

not having a single dedicated source that everyone could freely

and remotely use to accomplish tasks. Given that clarity and

repeatability are central themes to research synthesis, I hope

that by packaging all these functionalities into a single source,

I can set the groundwork for large and collaborative synthesis

projects, as well as provide a standardized theatre for teaching

systematic reviews and meta-analysis. Below, I outline stage-

by-stage how METAGEAR facilitates research synthesis projects

and promotes repeatability in their practices. As a complement

to this outline, I also provide an R vignette with illustrative

examples as Appendix S1.

SCREENING ABSTRACTS, DELEGATING TASKS AND

RETRIEVING ARTICLES

Identifying candidate studies is one of the first key stages in a

systematic review. However, literature searches with biblio-

graphic data bases such as Web of Knowledge or Google

Scholar will generate thousands of study references – this is

unavoidable given that search terms should aim to yield the

most inclusive results (see Curtis et al. 2013). The challenge

here is that the title and abstract of all of these references need

to be screened as a first attempt to sift those that are relevant

for the synthesis project. There are already several options to

help assist in reference screening and coding (i.e. tagging which

to exclude/include). Reference-managing software such as

Endnote or Mendeley can be shoehorned for this purpose (see

King et al. 2011). There are also dedicated subscription-based

screeners such as COVIDENCE (https://www.covidence.org) and

DISTILLERSR (http://distillercer.com), and some even try to

automate the screening process using machine learning

(ABSTRACKR; Wallace et al. 2012). METAGEAR also supports an

easy-to-use GUI screener to assist with the screening and cod-

ing of references (see Table 1 and Fig. 1). To help avoid poten-

tial selection bias based on the author, journal or year of the

study (see Jennions et al. 2013b), the GUI offers only the title

and abstract as the sole appraisal criteria for inclusion/exclu-

sion (Fig. 1).

If screening tasks are to be delegated across a research

team, METAGEAR supports collaborative tools (see Table 1)

that can randomly divide study references among members

evenly or unevenly (i.e. assigning more work to some and

less to others) and generate dual-screening designs where

two members independently code the same reference subset

to evaluate the repeatability or consistency of screening

tasks (also known as inter-reviewer agreement). Each mem-

ber can then work remotely on their reference subset using

the abstract screener. Screening tasks can also be redis-

tributed should screening commitments change (or if team

members fall behind, and it will happen!), and the teams’

progress can finally be combined and summarized (see

example of this workflow in the Appendix S1). For example,

effort_summary() will calculate Cohen’s (1960) kappa

(K) to assess inter-reviewer agreement if a dual-reviewing

design was implemented. Here is an example of this summary

Table 1. A sample of the R functions available in METAGEAR grouped by research synthesis taxonomy

Function Description

Systematic review

abstract_screener() AGUI for vetting the titles and abstracts of study references

effort_distribute() Distributes screening and extraction effort randomly and evenly among the reviewing team

effort_merge() Combines effort from collaborative screening jobs and calculation of inter-reviewer agreement

based onCohen’s kappa

plot_PRISMA() Generates a flow diagram of the phases of a systematic review

Data retrieval and extraction

PDFs_collect() Automatically fetches PDFs using theDOI ofmultiple journal references

figure_scatterPlot() Extracts data points from a scatter-plot figure image

figure_boxPlot() Extracts means and error bars from a box-plot figure image

figure_barPlot() Extracts means and error bars from a bar-plot figure image

figure_add() Adds pointsmanually to a figure image

Modelling effect sizes

impute_SD() Imputesmissing standard deviations (SDs) using coefficient of variation of complete data or

based on resampling techniques

covariance_commonControl() Estimates the VCVmatrix formultiple effect sizes with a common control

covariance_multivariate() Estimates the VCVmatrix based on a correlationmatrix formultivariate effects

random_d() Generates random-effect sizes based onHedges’ d or Cohen’s g

random_RR() Generates random log response ratios (RRs)

random_r() Generates randomPearson product–moment correlation coefficients (rs)

random_OR() Generates random log odd ratios (ORs)

Meta-analysis

replicate_MetaWin2.0() Duplicates the results and output of ameta-analysis performed byMETAWIN 2.0

(Rosenberg, Adams&Gurevitch 2000)

replicate_phyloMeta1.3() Replicates the results and output of traditional and phylogeneticmeta-analyses performed

by PHYLOMETA (Lajeunesse 2011b)

MA_effectsTable() Generates an ANOVA-like-effects table first described byHedges &Olkin (1985)

effects_powerAnalysis() Computes the statistical power of a pooled effect size orQ-statistic
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based on the efforts from a screening exercise of 479 abstracts

completed in my research synthesis course:

===SCREENINGEFFORTSUMMARY===

149candidatestudiesidentified

141studies excluded

189studies withconflicting agreement needing

additionalscreening

—

479TOTAL SCREENED

===DUAL SCREENING DESIGN SUMMARY===

The magnitude of Cohen’s kappa is also scored follow-

ing Landis & Koch’s (1977) interpretation ‘benchmarks’

ranging from poor (<0�0), slight (0�0–0�2), fair (0�21–0�4),
moderate (0�41–0�6), substantial (0�61–0�8), to almost per-

fect inclusion/exclusion agreement (0�81–1�0). References

with disagreements for inclusion/exclusion should be dis-

cussed and rescreened by the team. In the example above,

one of the reasons for the high disagreement was failure to

establish clearly defined inclusion criteria prior to screening

efforts. Curtis et al. (2013) provide helpful guidelines to

avoid this issue by developing an explicit protocol for

assessing the inclusion and exclusion of studies.

Once all study references have been screened, the next stage

is to retrieve their full texts. This is tedious when there are

hundreds or thousands of studies to collect. Here, METAGEAR

can be used to automate the download of these studies

(Table 1). Much like the reference-managing software END-

NOTE, METAGEAR’s downloader uses the DOI (digital object

identifier) of each bibliographic entry as a starting point to

fetch PDFs online. Note that the DOIs of published articles

are readily available and are often included when references

are exported from bibliographic data bases (e.g. Web of

Knowledge). Following the DOI link, the downloader then

uses publisher-tailored HTML searches to identify PDFs to

download – these ad hoc searches are necessary due to the lack

of standardized access to e-journals. It is important to note that

the success of these downloads will be conditional on the jour-

nal subscription coverage of the host institution running META-

GEAR. However, this limitation can be harnessed to assess

subscription or availability bias when collating studies from

different types of institutions or countries. Another benefit of

automating downloads is that it standardizes the file name of

each downloaded PDF. The filenames of PDFs from online

journals are often uninformative or cryptic, and having a stan-

dardized name (such as the unique study ID of each reference)

will later help speed up the retrieval of documents for data

extractions. Finally, it is also necessary to emphasize that the

downloader is only meant to expedite the gathering of PDFs

from published journal articles; the downloaded files will be

incomplete, and additional (manual) effort will still be needed

Fig. 1. The GUI from the

abstract_screener() function to help

sieve and code the references of candidate

studies for systematic reviews andmeta-analy-

sis. Sometimes bibliographic data bases such

as Web of Knowledge will not have complete

bibliographic information for a journal article

(e.g. DOI, abstract), and the title-to-browser

button is meant to quickly search for this

information on Google. The GUI also

includes a progression tracker for the number

of abstracts screened, as well as a button to

save screening progress.

 Team_A MAYBE NO  YES TOTAL %          Team_B MAYBE NO  YES TOTAL %          Cohen's K         
 Bryan  27     44  27  98    20.46     Neal   11     44  43  98    20.46     0.2899 (fair)     
 Keith  15     28  56  99    20.67     Nick   10     52  37  99    20.67     0.3371 (fair)     
 Jake   20     28  51  99    20.67     Ashley  5     38  56  99    20.67     0.452 (moderate)  
 Neiman  1     57  41  99    20.67     Jeremy 11     53  35  99    20.67     0.5546 (moderate) 
 Marc   19     23  42  84    17.54     Jason  12     41  31  84    17.54     0.3585 (fair)     
 TOTAL  82    180 217 479   100.00     TOTAL  49    228 202 479   100.00 
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to acquire all the full texts (e.g. articles that could not be down-

loaded, book chapters, dissertations). However, any download

failure will get coded and summarized to further help locate

thesemissing texts (see Appendix S1).

Finally, it is often useful to record and present each phase of

the screening process and number of studies included and

excluded in the final meta-analysis with a PRISMA diagram

(Preferred Reporting Items for Systematic Reviews and Meta-

Analyses; see Moher et al. 2009). The plot_PRISMA() func-

tion can be used to quickly generate and update flow diagrams

as each phase or stage gets completed. For example, below is

the R script to generate the plot presented in Fig. 2:

phasesc(“START_PHASE:#ofstudiesidentified

throughdatabasesearching”,

“START_PHASE:#ofadditionalstudiesidentified

throughothersources”,

“#ofstudiesafterduplicates removed”,

“#ofstudies with title and abstract screened”,

“EXCLUDE_PHASE:#ofstudiesexcluded”,

“#offull-textarticlesassessedforeligibility”,

“EXCLUDE_PHASE:#offull-textarticlesexcluded,

not fitting eligibility criteria”,

“#ofstudiesincludedinqualitativesynthesis”,

“EXCLUDE_PHASE:#studiesexcluded,incompletedata

reported”,

“final#ofstudiesincludedinquantitative

synthesis(meta-analysis)”)

plot_PRISMA(phases)

EXTRACTING AND IMPUTING DATA

Extracting data from studies to calculate effect sizes (a

common currency that quantitatively summarizes the mag-

nitude and sign of study outcomes) is by far the most

difficult and time-consuming stage of the entire research

synthesis process. It is a manual activity where researchers

must read and interpret the text/tables/figures of each study

with the goals of unearthing all the quantitative data

needed to calculate effect sizes (such as sample sizes, means;

Hedges 1981; Lajeunesse & Forbes 2003), and all the quali-

tative/quantitative information needed to establish modera-

tor groups and annotations useful for hypothesis testing

and quality control (see Koricheva, Gurevitch & Mengersen

2013). This activity is never straightforward, and there are

many challenges that can make studies nearly impenetrable

for data extractions.

A particularly challenging task is extracting or reverse

engineering the plotted data from published figures.

Although there are many options to help extract data avail-

able only in graphical form, such as general image manipu-

lation software (i.e. MS POWERPOINT, MS PAINT), image

software with specialized plug-ins (IMAGEJ; Abramoff,

Magelhaes & Ram 2004), or dedicated data extraction soft-

ware such as DATATHIEF (Tummers 2006) or GRAPHCLICK (In

Neuchatel 2008), these tools are often not cross-platform

and can be poorly documented. Further, none of these are

tailored with research synthesis in mind. METAGEAR offers

manual and automated tools to help extract numerical data

# of studies identified
through database searching

# of additional studies
identified through other

sources

# of studies after duplicates
removed

# of studies with title and
abstract screened # of studies excluded

# of full-text articles
assessed for eligibility

# of full-text articles
excluded, not fitting

eligibility criteria

# of studies included in
qualitative synthesis

# studies excluded,
incomplete data reported

final # of studies included
in quantitative synthesis

(meta-analysis)
Fig. 2. An example of a PRISMA flow dia-

gram generated by the plot_PRISMA()
function.
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from scatter-plot, box-plot and bar-plot figures. Below is a

worked example where I use METAGEAR to extract the plot-

ted points from Fig. 2 of Kam et al.’s (2003) study on pre-

dictors of metabolic rates in mice (this figure is reprinted

here as Fig. 3a). Kam et al.’s (2003) study also reports the

regression coefficients and R2 of this plot. I will compare

these reported values with those estimated by METAGEAR (the

original published results were as follows: Y = 12�03 +
0�907*X with an R2 = 0�59 and a sample size of N = 51).

I first obtained an image of the figure directly from the arti-

cle’s PDFwith a screenshot, then cropped it to include only the

figure itself and its axes and finally saved it as a JPG (file name:

“Kam_et_al_2003_Fig 2.jpg”; see Fig. 3a). Obtaining

an image directly from a PDF is often preferred over images

provided by online HTML articles as they tend to be higher

quality and can be resized without quality loss. High image

quality will improve the success of automated data extractions

as it increases the detection and separation of points and axes

(Pau et al. 2010). The function figure_scatterPlot() can

then be used to extract the data from the image as follows:

>figure_scatterPlot(“Kam_et_al_2003_Fig2.jpg”)

The default use of this function will plot a raster image of all

the detected axes and scatter-plot points (see Fig. 3b), return

an R data frame of the estimated X and Y data from this plot

(which can be analysed, plotted, saved or rescaled) and print to

console the following regression summary and estimated effect

size and variance (here the effect size is Pearson’s r correlation

coefficient):

regressionfit:Y=11�92586+0�9077*X,R-squared=

0�59498
Pearsonsr=0�7713478,var(r)=0�0034903,N=49

The extracted regression parameters are very similar to what

was reported byKam et al. (2003).

However, note that figure_scatterPlot() was unable

to separate two clusters of points on the reported figure.

These clusters are emphasized in orange (see Fig. 3b), and

although not shown, they were also coded along with the X

and Y data frame of the extracted data. This is also why

the sample size of the extracted regression was N = 49 and

not 51 as reported by Kam et al. (2003). I could not find

any established guidelines on how to treat clusters of points

that cannot be separated within a figure, but given that this

issue will be common for scatter-plots with high N and data

densities, METAGEAR supports two options. First, it will

automatically treat a cluster as a single point based on the

centroid of that cluster. This is perhaps analogous to imput-

ing the missing points with a single estimate based on the

average X and Y within that cluster. In the example above,

this imputation of clusters yielded a very similar regression

outcome as those reported in the original study. Secondly,

METAGEAR also offers a way to manually interpolate individ-

ual points within a plot with the figure_addPoints()

function. Here, the user essentially points and clicks on the

figure to add points not detected by the extraction algo-

rithm. As a final point, the defaults of figure_scat-

terPlot() are optimized for images of size ca. 650 by

650 pixels; tweaking the default parameters such as axis-bar

thickness and point size will be necessary for successful

extractions from images outside this size range (see exam-

ples in Appendix S1).

Another common challengewhen extracting data from stud-

ies is when crucial information for computing effect sizes is nei-

ther found nor reported in the study – such as the variances,

standard deviations (SDs) or standard errors (SEs). This is a

widespread barrier for calculating effect sizes (Lajeunesse &

Forbes 2003), but one common workaround is to use conver-

sions or alternative formulations of effect sizes to compute

effects (reviewed by Lipsey &Wilson 2001; Lajeunesse 2013a).

A large diversity of conversions are available (i.e. converting

t- or F-tests to Hedges’ d), and many are offered by the COM-

PUTE.ES R package (Del Re 2012) and Lipsey &Wilson’s (2001)

companion website: http://www.campbellcollaboration.org/

resources/effect_size_input.php. When conversions are not

possible, METAGEAR supports a few simple imputation

(a)

(b)

Fig. 3. An example of automated data extractions using METAGEAR

from a figure image using figure_scatterPlot(). The top panel

(a) is the original figure reported by Kam et al. (2003; Fig. 2). The bot-

tom panel (b) contains the detected objects on that figure: blue circles

are the detected points, orange circles are clusters of points that could

not be separated, green vertical line is the detectedY-axis, and the pink

horizontal line is the detectedX-axis. These detected objects are used to

estimate the regression line and correlation coefficient of the points

depicted in the image.
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approaches that can be used to fill gaps in missing SDs (see

Table 1). These imputation tools were outlined by Lajeunesse

(2013a) and either involve estimating the coefficient of varia-

tion from the (complete) observed data or rely on resampling

approaches to fill gaps. Therefore, as a caveat to their use and

success, these imputation tools should only be applied when

data extractions from all studies have been completed. These

SD imputation tools include Bracken’s (1992) method for fill-

ing missing information using the coefficient of variation from

all studies with complete information. METAGEAR also provides

two variations on Rubin & Schenker’s (1991) ‘hot deck’ impu-

tation approach. The first is a strictly randomhot deck imputa-

tion where SDs are imputed using all the observed SDs, while

the other imputes only SDs that are nearest neighbours relative

to theirmeans (i.e. impute SDs fromdatawithmeans of similar

scale).

MODELLING EFFECT SIZES AND DEPENDENCIES

There is considerable interest in modelling dependencies

within and among effect sizes for meta-analysis (Gleser &

Olkin 1994; Curtis & Queenborough 2012). Dependent effect

sizes violate some of the most basic assumptions of statistics,

and the goal is to minimize inferential errors when hypothe-

sis testing with meta-analysis (Lajeunesse 2009; Mengersen,

Jennions & Schmid 2013). Dependencies can range from

using shared information to calculate multiple effect sizes, to

modelling effect sizes in a phylogenetic context. METAGEAR

supports a broad diversity of tools to calculate covariances

and variance–covariance matrices for dependent effect sizes

(Table 1). One pervasive form is when multiple effect sizes

share data from a common control group (see example in

Lajeunesse 2011a). METAGEAR offers the covariance equations

needed to model this common-control problem for all the

major effect size metrics (e.g. Hedges’ d, log response ratio,

odds ratio, correlation coefficient) and will also generate the

variance–covariance matrices needed to integrate these

covariances into meta-analysis using the METAFOR R package

(Viechtbauer 2010). An example of this application is found

in the Appendix S1. Similarly, phylogenetic dependencies

assuming simple Brownian motion models of phenotypic

evolution can be modelled in METAGEAR similar to analyses

produced by console program PHYLOMETA (Lajeunesse 2011b;

Chamberlain et al. 2012; Lajeunesse, Rosenberg & Jennions

2013). Finally for Monte Carlo modelling, METAGEAR has

random number generators for several of the major effect

size metrics used in meta-analysis (Table 1). These generators

create random-effect sizes by sampling their known probabil-

ity distribution when possible (e.g. non-central t-distribution

for Hedges’ d) or generate random study parameters (i.e.

means, SD and N) that can be used to compute random-ef-

fect sizes.

META-ANALYSIS AND THE REPRODUCIB IL ITY OF

SYNTHESES

The most basic goals of meta-analysis software are to pro-

vide weighted regression tools for combining and compar-

ing effect sizes (i.e. with the inverse variance of each effect

size as weights; Hedges & Olkin 1985), and to model

sources of statistical heterogeneity among effect sizes that

exist beyond sampling error, such as the between-study

variance (s2) component of random-effects models (Higgins

& Thompson 2002). Ecologists and evolutionary biologists

have historically relied heavily on METAWIN (Rosenberg,

Adams & Gurevitch 2000) to meet these statistical goals.

With more than 950 published applications to date (Goo-

gle Scholar: 7/08/15), and with nearly 25% of these from

the last 2 years alone (2013–2015), there is also little evi-

dence that this software is losing traction among users.

This popularity is also remarkable considering the avail-

ability of more sophisticated meta-analysis software, such

as COMPREHENSIVE META-ANALYSIS (reviewed by Schmid et al.

2013) and the free OPENMEE (Wallace et al. 2015), as well

as the METAFOR R package which now dominates the statis-

tical analyses of many disciplines (Viechtbauer 2010). There

is a lot that could be said about creating easy-to-use,

GUI-driven, discipline-tailored software such as METAWIN.

Unfortunately, METAWIN is no longer maintained (last

updated in 2007), and it is important that analyses from this

software can be reproduced for historical compatibilities as

new statistical developments and practices emerge. Further,

duplicating the analyses of METAWIN may not be straightfor-

ward in R given that some of its statistical approaches were

theData <- read.csv(file = "effect.dta", header = TRUE) 
replicate_MetaWin2.0(Effect ~ 1, weights = Var, data = theData) 

=== START of Rosenberg et al. (2002) metaWin 2.0 output === 

Estimate of pooled variance: 0.243866 

SUMMARY RESULTS 

Heterogeneity        df    Prob(Chi-Square) 
------------------------------------------------ 
Qtotal  28.729215    29    0.47923    

Mean Effect Size        95% CI                  Bootstrap CI            Bias CI                 
-------------------------------------------------------------------------------------------- 
E++  0.916966           0.621266 to 1.212667    0.622620 to 1.196920   0.606058 to 1.187931    

Sqrt Pooled Variance = 0.493828 
 Mean Study Variance = 0.5015  Ratio = 0.984702    

------------------------------------------------ 

=== END of Rosenberg et al. (2002) MetaWin 2.0 output === 
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never fully documented. For example, it uses a t-distribution

to estimate 95% confidence intervals and sums of squares of

regression models as Q-tests (following Hedges & Olkin 1985)

applies a DerSimonian & Laird (1986) approach to estimating

s2, and when a moderator variable is included in a random-

effects analysis, it recycles the s2 from that model to estimate

an overall (grand mean) pooled effect size. The function

replicate_MetaWin2.0() aims to duplicate these statisti-

cal approaches and the way they were reported. Below,

using one of the original data sets ‘effect.dta’ packaged

with METAWIN 2.0, is the output from a random-effects

meta-analysis based on this R function:

Conclusions and prospectus

Looking to the future, there is still room to grow in terms of

developing tools for research synthesis – such as automating

PDF annotations, text-mining tools to enhance data retrieval

and extraction, methods to estimate statistical power (Laje-

unesse 2013b), multiple-imputation tools (Lajeunesse 2013a;

Ellington et al. 2015) and better approaches to assess publica-

tion bias. There is also a continuing need to improve how

synthesis results and meta-analytic outcomes are presented

and reported in research articles (Lortie et al. 2015). Trans-

parency and clarity are also crucial to strengthen the repeata-

bility of synthesis findings, but are also necessary to improve

the second-order analysis of these synthesis-level outcomes

(Hunter & Schmidt 2004). Finally, given the often overwhelm-

ing interdisciplinary nature of research synthesis methods, I

hope that by offering a single dedicated source for all these

tools, I can facilitate the training, education and adoption of

these diverse methodologies and elevate the standards and

practices of what can be achieved by ecologists and evolution

biologists with these tools.
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(https://github.com/cran/metagear).
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Basic examples of screening studies, extracting data, and 
meta-analysis with the metagear package for R 

Marc J. Lajeunesse 

University of South Florida, August 5th 2015 (for metagear v. 0.2) 

 

Introduction 

The metagear package for R contains tools for facilitating systematic reviews, data 
extraction, and meta-analyses. It aims to facilitate research synthesis as a whole, by 
providing a single source for several of the common tasks involved in screening studies, 
extracting outcomes from studies, and performing statistical analyses on these outcomes 
using meta-analysis. Below are a few illustrative examples of applications of these 
functionalities. 

Updates to these examples will be posted on our research webpage at USF. 

For the source code of metagear see: http://cran.r-project.org/web/packages/metagear/index.html. 

 

Delegating reference screening effort to a team 

One of the first tasks of a systematic review is to screen the titles and abstracts of study 
references to assess their relevance for the synthesis project. For example, after a 
bibliographic search using Web of Science, there may be thousands of references 
generated; references from experimental studies, modeling studies, review papers, 
commentaries, etc. These need to be reviewed individually as a first pass to exclude those 
that do not fit the synthesis project; such as excluding simulation studies that do not report 
experimental outcomes useful for estimating an effect size. 

However, individually screening thousands of references is time consuming, and large 
synthesis projects may benefit from delegating this screening effort to a research team. 
Having multiple people screen references also provides an opportunity to assess the 
repeatability of these screening decisions. 

In this example, we have the following goals: 

1. Initialize a dataframe containing bibliographic data (tile, abstract, journal) from 
multiple study references. 

2. Distribute these references randomly to two team members. 

http://lajeunesse.myweb.usf.edu/
http://www.r-project.org/
https://en.wikipedia.org/wiki/Systematic_review
https://en.wikipedia.org/wiki/Meta-analysis
http://lajeunesse.myweb.usf.edu/
http://cran.r-project.org/web/packages/metagear/index.html
https://en.wikipedia.org/wiki/Bibliographic_database
https://en.wikipedia.org/wiki/Effect_size


3. Merge and summarize the screening efforts of this team. 

First, let's start by loading and exploring the contents of a pre-packaged dataset from 
metagear that contains the bibliographic information of 11 journal articles 
(example_references_metagear). These data are a subset of references generated from a 
search in Web of Science for "Genome size", and contain the abstracts, titles, volume, page 
numbers, and authors of these references. 

# load package 
library(metagear) 
# load a bibliographic dataset with the authors, titles, and abstracts of multiple study references  
data(example_references_metagear) 
# display the bibliographic variables in this dataset 
names(example_references_metagear) 

## [1] "AUTHORS"  "YEAR"     "TITLE"    "JOURNAL"  "VOLUME"   "LPAGES"   "UPAGES"   "DOI"      "ABSTRACT" 

# display the various Journals that these references were published in 
example_references_metagear["JOURNAL"] 

##                                                JOURNAL 
## 1  BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 
## 2                        EVOLUTIONARY ECOLOGY RESEARCH 
## 3                                  AMERICAN NATURALIST 
## 4                                                 GENE 
## 5                                          VIRUS GENES 
## 6                        JOURNAL OF SHELLFISH RESEARCH 
## 7                      JOURNAL OF GENERAL MICROBIOLOGY 
## 8                                 APPLIED GEOCHEMISTRY 
## 9      JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY 
## 10                                  BIOLOGIA PLANTARUM 
## 11                                            GENOMICS 

Our next step is to initialize/prime this dataset for screening tasks. Our goal is to distribute 
screening efforts to two screeners/reviewers: "Christina" and "Luc". Here each reviewer 
will screen a separate subset of these references (a forthcoming example will review how 
to set up a dual screening design where each member screens the same references). The 
dataset first needs to be initialized as follows: 

# prime the study-reference dataset 
theRefs <- effort_initialize(example_references_metagear) 
# display the new columns added by effort_initialize  
names(theRefs) 

##  [1] "STUDY_ID"  "REVIEWERS" "INCLUDE"   "AUTHORS"   "YEAR"      "TITLE"     "JOURNAL"   "VOLUME"    
"LPAGES"    "UPAGES"    "DOI"       "ABSTRACT" 

Note that the effort_initialize() function added three new columns: "STUDY_ID" which 
is a unique number for each reference (e.g., from 1 to 11), "REVIEWERS" an empty column 
with NAs that will be later populated with our reviewers (e.g., Christina and Luc), and 
finally the "INCLUDE" column, which will later contain the screening efforts by the two 
reviewers. 

Screening efforts are essentially how individual study references get coded for inclusion in 
the synthesis project; currently the "INCLUDE" column has each reference coded as "not 
vetted", indicating that each reference has yet to be screened. 

Our next task is to delegate screening efforts to our two reviewers Christina and Luc. Our 
goal is to randomly distribute these references to each reviewer. 



# randomly distribute screening effort to a team 
theTeam <- c("Christina", "Luc") 
theRefs_unscreened <- effort_distribute(theRefs, reviewers = theTeam) 
# display screening tasks 
theRefs_unscreened[c("STUDY_ID", "REVIEWERS")] 

##    STUDY_ID REVIEWERS 
## 1         1       Luc 
## 2         2 Christina 
## 3         3 Christina 
## 4         4 Christina 
## 5         5       Luc 
## 6         6 Christina 
## 7         7       Luc 
## 8         8       Luc 
## 9         9 Christina 
## 10       10 Christina 
## 11       11       Luc 

The screening efforts can also be delegated unevenly, such as below where Luc will take on 
80% of the screening effort: 

# randomly distribute screening effort to a team, but with Luc handeling 80% of the work 
theRefs_unscreened <- effort_distribute(theRefs, reviewers = theTeam, effort = c(20, 80)) 
theRefs_unscreened[c("STUDY_ID", "REVIEWERS")] 

##    STUDY_ID REVIEWERS 
## 1         1       Luc 
## 2         2       Luc 
## 3         3       Luc 
## 4         4       Luc 
## 5         5 Christina 
## 6         6       Luc 
## 7         7       Luc 
## 8         8       Luc 
## 9         9       Luc 
## 10       10 Christina 
## 11       11       Luc 

The effort can also be redistributed with the effort_redistribute() function. In the 
above example we assigned Luc 80% of the work. Now let's redistribute half of Luc's work 
to a new team member "Patsy". 

theRefs_Patsy <- effort_redistribute(theRefs_unscreened,  
                                     reviewer = "Luc", 
                                     remove_effort = "50", # move 50% of Luc's work to Patsy 
                                     reviewers = c("Luc", "Patsy")) # team members loosing and picking up 
work 
theRefs_Patsy[c("STUDY_ID", "REVIEWERS")] 

##    STUDY_ID REVIEWERS 
## 5         5 Christina 
## 10       10 Christina 
## 1         1     Patsy 
## 2         2     Patsy 
## 3         3       Luc 
## 4         4     Patsy 
## 6         6       Luc 
## 7         7       Luc 
## 8         8       Luc 
## 9         9       Luc 
## 11       11     Patsy 

The references have now been randomly assigned to either Christina or Luc. The whole 
initialization of the reference dataset with effort_initialize() can be abbreviated with 



effort_distribute(example_references_metagear, reviewers = c("Christina", 

"Luc"), initialize = TRUE). 

Now that screening tasks have been distributed, the next stage is for reviewers to start the 
manual screening of each assigned reference. This is perhaps best done by providing a 
separate file of these references to Christina and Luc. They can then work on screening 
these references separately and remotely. Once the screening is complete, we can then 
merge these files into a complete dataset (we'll get to this later). 

The effort_distribute() function can also save to file each reference subset; these can be 
given to Christina and Luc to start their work. This is done by setting the 'save_split' 
parameter to TRUE. 

# randomly distribute screening effort to a team, but with Luc handling 80% of the work,  
# but also saving these screening tasks to separate files for each team member 
theRefs_unscreened <- effort_distribute(theRefs, reviewers = theTeam, effort = c(20, 80), save_split = 
TRUE) 

## 2 files saved in: C:/Users/lajeunesse@usf.edu/Desktop 

theRefs_unscreened[c("STUDY_ID", "REVIEWERS")] 

##    STUDY_ID REVIEWERS 
## 1         1       Luc 
## 2         2 Christina 
## 3         3       Luc 
## 4         4       Luc 
## 5         5 Christina 
## 6         6       Luc 
## 7         7       Luc 
## 8         8       Luc 
## 9         9       Luc 
## 10       10       Luc 
## 11       11       Luc 

list.files(pattern = "effort") 

## [1] "effort_Christina.csv" "effort_Luc.csv" 

These two effort_*.csv files contain the assigned references for Christina and Luc. These can 
be passed on to each team member so that they can begin screening/coding each reference 
for inclusion in the synthesis project. 

References should be coded as "YES" or "NO" for inclusion, but can also be coded as 
"MAYBE" if bibliographic information is missing or there is inadequate information to 
make a proper assessment of the study. 

The abstract_screener() function can be used to facilitate this screening process (an 
example is forthcoming), but for the sake of introducing how screening efforts can be 
merged and summarized, I manually coded all the references in both of Christina's and 
Luc's effort_*.csv files. Essentially, I randomly coded each references as either "YES", "NO", 
or "MAYBE". These files now contain the completed screening efforts. 

We can merge these two files with the completed screening efforts using the 
effort_merge() function, as well as summarize the outcome of screening tasks using the 
effort_summary() function. 



# merge the effort_Luc.csv and effort_Christina.csv [WARNING: will merge all files named "effort_*" in 
directory] 
theRefs_screened <- effort_merge() 
theRefs_screened[c("STUDY_ID", "REVIEWERS", "INCLUDE")] 

##    STUDY_ID REVIEWERS INCLUDE 
## 1         2 Christina      NO 
## 2         5 Christina      NO 
## 3         1       Luc   MAYBE 
## 4         3       Luc      NO 
## 5         4       Luc     YES 
## 6         6       Luc     YES 
## 7         7       Luc      NO 
## 8         8       Luc   MAYBE 
## 9         9       Luc      NO 
## 10       10       Luc   MAYBE 
## 11       11       Luc   MAYBE 

theSummary <- effort_summary(theRefs_screened) 

## === SCREENING EFFORT SUMMARY === 
##  
##    2 candidate studies identified 
##    4 studies excluded 
##    5 challenging studies needing additional screening 
##   ---- 
##    11 TOTAL SCREENED 
##  
## === SCREENING DESIGN SUMMARY === 
##  
##           NO MAYBE YES TOTAL         % 
## Christina  2     0   0     2  18.18182 
## Luc        3     4   2     9  81.81818 
## TOTAL      5     4   2    11 100.00000 

The summary of screening tasks describes the outcomes of which references had studies 
appropriate for the synthesis project, while also outlining which need to be re-assessed. 
The team should discuss these challenging references and decide if they are appropriate for 
inclusion or track down any additional/missing information needed to make proper 
assessment of their inclusion. 

 

Downloading PDFs 

Once references have been screened, metagear can be used to download and organize the 
full-texts of these references. However, note that the download success of these PDFs is 
entirely conditional on the journal subscription coverage of the host institution running 
metagear. Also note that metagear only supports the download of a PDF article if the DOI 
(digital object identifier) is available for that article. 

In this example, we have the following goals: 

1. Download a single PDF with the PDF_download() function. 

2. Download multiple PDFs with the PDFs_collect() function. 



Let's start by loading the pre-packaged reference dataset in metagear that contains the 
bibliographic information of 11 journal articles (example_references_metagear). This 
dataset includes a column "DOI" which contains the DOI of each article (if available). 

# load package 
library(metagear) 
# load a bibliographic dataset with the DOIs 
data(example_references_metagear) 
# display the year published of each study reference and their DOIs 
example_references_metagear[c("JOURNAL", "DOI")] 

##                                                JOURNAL                           DOI 
## 1  BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS    10.1016/j.bbrc.2011.10.017 
## 2                        EVOLUTIONARY ECOLOGY RESEARCH                          <NA> 
## 3                                  AMERICAN NATURALIST                10.1086/319928 
## 4                                                 GENE    10.1016/j.gene.2008.01.009 
## 5                                          VIRUS GENES     10.1007/s11262-012-0864-0 
## 6                        JOURNAL OF SHELLFISH RESEARCH          10.2983/035.029.0428 
## 7                      JOURNAL OF GENERAL MICROBIOLOGY                          <NA> 
## 8                                 APPLIED GEOCHEMISTRY 10.1016/S0883-2927(02)00054-9 
## 9      JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY                          <NA> 
## 10                                  BIOLOGIA PLANTARUM       10.1023/A:1012426306493 
## 11                                            GENOMICS   10.1016/j.ygeno.2013.09.002 

Note that references collected from bibliographic databases like Web of Science will often 
be incomplete. For example, the study published in EVOLUTIONARY ECOLOGY RESEARCH 
does not have a DOI (described above as NA). This is because EVOLUTIONARY ECOLOGY 
RESEARCH is an independently published journal and does not provide DOIs for their 
research articles. 

However, a DOI for the AMERICAN NATURALIST study is available, and let's use it to fetch 
the PDF. 

# load package 
PDF_download("10.1086/319928", theFileName = "AMNAT_metagear") 

## Collecting PDF from DOI: 10.1086/319928 
##          Extraction 1 of 2: HTML script.... successful 
##          Extraction 2 of 2: PDF download... successful 

The downloader provides information on the download success, and in this case a PDF was 
successfully retrieved. It was saved in the working directory of the R process (to see this 
directory use getwd()). 

Now let's try downloading all the PDFs from our reference dataset. This can be done using 
the PDFs_collect() function. 

# (optional) initialize the reference dataset to help generate standardized fileNames (e.g., STUDY_ID 
numbers) 
theRefs <- effort_initialize(example_references_metagear) 
# fetch the PDFs 
PDFs_collect(theRefs, DOIcolumn = "DOI", FileNamecolumn = "STUDY_ID", directory = getwd()) 

## Collecting PDF from DOI: 10.1016/j.bbrc.2011.10.017 
##          Extraction 1 of 2: HTML script.... successful 
##          Extraction 2 of 2: PDF download... successful 
## Collecting PDF from DOI: NA 
##          Extraction 1 of 2: HTML script.... cannot open: HTTP status was '404 Not Found' 
##          Extraction 2 of 2: PDF download... skipped 
## Collecting PDF from DOI: 10.1086/319928 
##          Extraction 1 of 2: HTML script.... successful 
##          Extraction 2 of 2: PDF download... successful 



## Collecting PDF from DOI: 10.1016/j.gene.2008.01.009 
##          Extraction 1 of 2: HTML script.... successful 
##          Extraction 2 of 2: PDF download... successful 
## Collecting PDF from DOI: 10.1007/s11262-012-0864-0 
##          Extraction 1 of 2: HTML script.... successful 
##          Extraction 2 of 2: PDF download... successful 
## Collecting PDF from DOI: 10.2983/035.029.0428 
##          Extraction 1 of 2: HTML script.... successful 
##          Extraction 2 of 2: PDF download... successful 
## Collecting PDF from DOI: NA 
##          Extraction 1 of 2: HTML script.... cannot open: HTTP status was '404 Not Found' 
##          Extraction 2 of 2: PDF download... skipped 
## Collecting PDF from DOI: 10.1016/S0883-2927(02)00054-9 
##          Extraction 1 of 2: HTML script.... successful 
##          Extraction 2 of 2: PDF download... successful 
## Collecting PDF from DOI: NA 
##          Extraction 1 of 2: HTML script.... cannot open: HTTP status was '404 Not Found' 
##          Extraction 2 of 2: PDF download... skipped 
## Collecting PDF from DOI: 10.1023/A:1012426306493 
##          Extraction 1 of 2: HTML script.... successful 
##          Extraction 2 of 2: PDF download... successful 
## Collecting PDF from DOI: 10.1016/j.ygeno.2013.09.002 
##          Extraction 1 of 2: HTML script.... successful 
##          Extraction 2 of 2: PDF download... successful 
##  
## PDF download summary 
##   8 = downloaded 
##   3 = URL error 
##  Downloads located in: C:/Users/lajeunesse@usf.edu/Documents 

Eight of the 11 references had successful PDF downloads; the remaining 3 did not have 
DOIs available. These PDFs will need to be checked to determine if their contents are the 
desired research articles. Also note that the downloading process will take time, and in 
general, it will take ~ 45 seconds to detect and download a single PDF. 

 

Automated extraction of data from scatterplots 

Extracting data from a figure image is a common challenge when trying to extract outcomes 
(effect sizes) from a study. The scrapping (reverse engineering) of data points from a 
scatterplot image can be automated with metagear. 

In these examples, we have the following goals: 

1. Extract data points from an image containing a scatterplot using the 
figure_scatterPlot() default parameters. 

2. Tweak the parameters to extract data from scatterplots with various formats (e.g., 
different point shapes, or image sizes). 

Example 1 | figure_scatterPlot() default settings 

Metagear offers a pre-packaged scatterplot image, and so let's begin with extracting data 
from this image, before moving to more advanced applications of figure_scatterPlot(). 
First, let's load and display the image. 



# load metagear package and .jpg image manipulation package EBImage 
library(metagear) 
library(EBImage) 
# load the scatterplot image, source: Kam et al. (2003) Functional Ecology 17:496-503. 
data(Kam_et_al_2003_Fig2) 
# display the image 
figure_display(Kam_et_al_2003_Fig2)  

 

Now let's use figure_scatterPlot() to scrape data from this image; however, because 
Kam_et_al_2003_Fig2 is pre-packaged with metagear it needs to be converted back to a 
.jpg before the image can be processed. 

The figure_scatterPlot() will by default output three objects: 

2. The estimated regression fit of these detected points, as well as the estimated effect 
size and variance of the correlation presented in the figure. 

3. A raster image of the detected objects painted over the original image. Blue spheres 
are detected points, orange spheres are detected clusters of points that could not be 
separated, the X-axis in pink, and the Y-axis in green. The points and axes can also be 
extracted individually using the figure_detectAllPoints() and 
figure_detectAxis() functions. 

4. The X and Y data from each detected point on the image, and information on whether 
that point was identified as a cluster. 

Here are the results of using figure_scatterPlot() on Kam et al.'s (2002) figure. 

# convert back to .jpg 
figure_write(Kam_et_al_2003_Fig2, file = "Kam_et_al_2003_Fig2.jpg") 



# load the scatterplot image, source: Kam et al. (2003) Functional Ecology 17:496-503. 
rawData <- figure_scatterPlot("Kam_et_al_2003_Fig2.jpg")  

## regression fit: Y = 11.92716 + 0.90769 * X, R-squared = 0.59496 
## Pearson's r = 0.7713394, var(r) = 0.0034905, N = 49 

 

The estimated regression coefficients are very similar to those originally reported by Kam 
et al.'s (2002) study; which were Y = 12.03 + 0.907 * X with an R2 = 0.59 and a sample size 
of N = 51. 

Example 2 | tweaking defaults for image size 

Now let's try to extract data from another image. This time the figure is relatively small and 
figure_scatterPlot() will need some adjustments based on this size difference. Also, this 
time we will scale the data extractions to the X- and Y-axis scale; this is useful to calculate 
the original regression coefficients. Here, the minimum and maximum presented in the 
figure for the X-axis is 0 to 50, and 0 to 70 for the Y-axis. However, note that re-scaling the 
data does not affect the effect size calculated from the figure, only the estimated regression 
coefficients. Let's download the image first from my website and then process it. 

# download the figure image from my website 
figureSource <- "http://lajeunesse.myweb.usf.edu/metagear/example_2_scatterPlot.jpg" 
download.file(figureSource, "example_2_scatterPlot.jpg", quiet = TRUE, mode = "wb") 
aFig <- figure_read("example_2_scatterPlot.jpg", display = TRUE) 



 

# because of the small size of the image the axis parameter needed adjustment from 5 to 3 
rawData2 <- figure_scatterPlot("example_2_scatterPlot.jpg",   
                               axis_thickness = 3, # adjusted from 5 to 3 to help detect the thin axis 
                               X_min = 0, # minimum X-value reported in the plot 
                               X_max = 50, # maximum X-value reported in the plot 
                               Y_min = 0, 
                               Y_max = 70) 

## regression fit: Y = -0.40746 + 1.26962 * X, R-squared = 0.51678 
## Pearson's r = 0.7188738, var(r) = 0.0179617, N = 15 

 

In this example, because of the small size of the figure, the axis_thinkness parameter 
needed to be reduced from 5 to 3. This was sufficient to detect the axis lines and extract the 
plotted data. 



Example 3 | more tweaking based on color, size, and empty points 

In this figure example, we have the case where the image is large (1122px by 780px), the 
plotted points are large but empty, and the axis lines are thin and grey. All of these issues 
complicate object detection on the figure. 

# download the figure image from my website 
figureSource <- "http://lajeunesse.myweb.usf.edu/metagear/example_3_scatterPlot.jpg" 
download.file(figureSource, "example_3_scatterPlot.jpg", quiet = TRUE, mode = "wb") 
aFig <- figure_read("example_3_scatterPlot.jpg", display = TRUE) 

 

# tweaking the figure_scatterPlot() function to improve object detection 
rawData3 <- figure_scatterPlot("example_3_scatterPlot.jpg", 
                               binary_point_fill = TRUE, # set to TRUE to fill empty points 
                               point_size = 9, # increase from 5 to 9 since points are large 
                               binary_threshold = 0.8, # increase from 0.6 to 0.8 to include the grey 
objects 
                               axis_thickness = 3, # decrease from 5 to 3 since axes are thin 
                               X_min = 0, 
                               X_max = 800, 
                               Y_min = 0, 
                               Y_max = 35) 

## regression fit: Y = 8.50394 + 0.02549 * X, R-squared = 0.45299 
## Pearson's r = 0.6730416, var(r) = 0.0019557, N = 155 



 

It looks like figure_scatterPlot() confused some of the regression summary text on the 
plot for points. This can be avoided by erasing all superfluous information on the figure 
prior to processing with figure_scatterPlot(). However, in our case we are interested in 
estimating these reported regression coefficients. We can quickly exclude these false 
detections since they reside within a specific range on the plot that does not include data 
(e.g., values above 25 for Y, and below 305 for X). 

# remove false detected points from the regression summary presented within the plot 
cleaned_rawData3 <- rawData3[ which(!(rawData3$X < 350 & rawData3$Y > 25)), ] 
# estimate the regression coefficients 
lm(Y ~ X, data = cleaned_rawData3) 

##  
## Call: 
## lm(formula = Y ~ X, data = cleaned_rawData3) 
##  
## Coefficients: 
## (Intercept)            X   
##     6.45334      0.02893 

# and get R-squared 
round(summary(lm(Y ~ X, data = cleaned_rawData3))$r.squared, 4) 

## [1] 0.6369 

The estimated regression coefficients are very similar to those presented within the plot. 



Automated extraction of data from bar plots 

Bar plots (or bar charts) are a common way to present information in groups or categories. 

In these examples, we have the following goals: 

1. Extract data points from an image containing a bar plot using the figure_barPlot() 
default parameters. 

2. Tweak the parameters to extract data from bar plots with various formats (e.g., with 
bars with different shading indicating different groups, or bars presented horizontally 
rather than vertically). 

Example 1 | figure_barPlot() default settings 

Let's have a look at the bar plot image provided by metagear called 
Kortum_and_Acymyan_2013_Fig4; originally extracted from Kortum & Acymyan (2013; 
Journal of Usability Studies 9:14-24). 

# load metagear package 
library(metagear) 
# load the scatterplot image, source: Kortum & Acymyan (2013) J. of Usability Studies 9:14-24). 
data(Kortum_and_Acymyan_2013_Fig4) 
# display the image 
figure_display(Kortum_and_Acymyan_2013_Fig4) 

 

Manual extraction of the bars and their errors will be time consuming here given that there 
are 42 separate data points to be gathered (i.e. 14 bars each with upper and lower error 
bars). Let's use figure_barPlot() with its default options to extract these 42 points. 

https://en.wikipedia.org/wiki/Bar_chart


# convert metagear image object back to .jpg and then extract objects from this .jpg 
figure_write(Kortum_and_Acymyan_2013_Fig4, file = "Kortum_and_Acymyan_2013_Fig4.jpg") 
rawData <- figure_barPlot("Kortum_and_Acymyan_2013_Fig4.jpg") 

 

In the above image, the detected points for each ballot were painted in blue. Let's have a 
closer look at these extracted data. 

# display extracted points 
as.vector(round(rawData, 2)) 

##  [1] 15.13 20.57  9.69 21.99 28.37 15.84 31.44 26.00 20.33 29.55 35.93 23.17 34.75 28.37 41.13 35.93 
43.03 28.84 37.83 45.63 30.50 32.86 39.24 45.63 41.84 34.28 49.41 53.90 62.17 45.86 62.65 54.61 70.92 
71.87 54.61 63.12 73.52 67.38 79.20 92.67 89.13 95.98 

Metagear is not clever enough to know what groupings these extractions belong too; 
however, the extractions will be sorted relative to their axis positioning. For example, there 
are three extractions that occupy the same X-axis range under the A ballot column. These 
three extractions will be grouped together in the figure_barPlot() output. With this in 
mind, a little data manipulation is needed to make better sense of these ballot data. 

# extractions are in triplicates with an upper, mean, and lower values, so let's 
# stack by three and sort within triplicates from lowest to highest 
organizedData <- t(apply(matrix(rawData, ncol = 3, byrow = TRUE), 1, sort)) 
# rename rows and columns of these triplicates as presented in Kortum_and_Acymyan_2013_Fig4.jpg 
theExtraction_names <- c("lower 95%CI", "mean SUS score", "upper 95%CI") 
theBar_names <- toupper(letters[1:14]) 
dimnames(organizedData) <- list(theBar_names, theExtraction_names) 
organizedData 

##   lower 95%CI mean SUS score upper 95%CI 
## A    9.692671       15.13002    20.56738 
## B   15.839243       21.98582    28.36879 
## C   20.330969       26.00473    31.44208 



## D   23.167849       29.55083    35.93381 
## E   28.368794       34.75177    41.13475 
## F   28.841608       35.93381    43.02600 
## G   30.496454       37.82506    45.62648 
## H   32.860520       39.24350    45.62648 
## I   34.278960       41.84397    49.40898 
## J   45.862884       53.90071    62.17494 
## K   54.609929       62.64775    70.92199 
## L   54.609929       63.12057    71.86761 
## M   67.375887       73.52246    79.19622 
## N   89.125296       92.67139    95.98109 

Example 2 | tweaking defaults for horizontal columns 

Now let's try to extract data from another image where bar-plot is presented horizontally 
(i.e. bars stem from the Y-axis). 

# download the figure image from my website 
figureSource <- "http://lajeunesse.myweb.usf.edu/metagear/example_2_barPlot.jpg" 
download.file(figureSource, "example_2_barPlot.jpg", quiet = TRUE, mode = "wb") 
aFig <- figure_read("example_2_barPlot.jpg", display = TRUE) 

 

rawData2 <- figure_barPlot("example_2_barPlot.jpg",   
                            horizontal = TRUE, # changed from FALSE since bars are horizontal 
                            bar_width = 11, # raised from 9 since bars are wide relative to the figure 
                            Y_min = 0, 
                            Y_max = 10) 



 

The function also detected the right-most vertical line (part of the the figure box) as a 
datapoint. The options of figure_barPlot() can be tweaked to avoid this issue; however, it 
might be easier to just exclude this extraction given that it has the largest plant biomass 
value (i.e. close to 10). Let's exclude this false datapoint and organize the dataset as 
presented in the figure. 

# exclude the false detection 
rawData2 <- rawData2[rawData2 < max(rawData2)] 
# data are in triplicates with an upper, mean, and lower values, so let's 
# stack by three and sort within triplicates from lowest to highest 
organizedData <- t(apply(matrix(rawData2, ncol = 3, byrow = TRUE), 1, sort)) 
# rename rows and columns of these triplicates as presented in the figure 
theExtraction_names <- c("lower error", "bar", "upper error") 
theBar_names <- c("exclosure", "water", "fertilizer", "control") 
dimnames(organizedData) <- list(theBar_names, theExtraction_names) 
organizedData 

##            lower error      bar upper error 
## exclosure     4.775438 5.466238    6.173633 
## water         7.572347 7.974277    8.376206 
## fertilizer    8.986066 9.276230    9.581994 
## control       4.678975 4.983923    5.273312 

 



Meta-analysis with multiple effect sizes that share a common 
control 

Typically an effect size quantified with a response ratio uses the means (X), standard 
deviations (SD), and sample sizes (N) from single control (C) and treatment (T) groups. 
However, some studies will compare multiple treatment groups to a single control. 

Here we will replicate the meta-analysis example presented in Lajeunesse (2011; Ecology 
92, 2049-2055) for modeling effect sizes that share a common control. 

# load metagear package 
library(metagear) 
# get dataset from my website 
dataSource <- "http://lajeunesse.myweb.usf.edu/metagear/Lajeunesse_2011_commonControl.csv" 
theData <- read.csv(dataSource, header = TRUE) 
# calculate response ratios (RR) and add these effect sizes to the dataset 
theData$RR <- log(theData$X_T/theData$X_C) 
# display effect sizes as reported by Lajeunesse (2011; page 2052, second paragraph) 
round(theData$RR, 3) 

## [1] -0.598  0.182  0.718 

These three RR effect sizes share a common control. The next step is to model the 
covariances (the dependencies) among these effect sizes using the metagear's 
covariance_commonControl() function. There will be a list of two objects outputted from 
this function, the first will be the variance-covariance matrix that models the dependencies 
among effect sizes, and the second is the effect size dataset that is aligned with the 
structure of this matrix. Let's now compute and display the matrix. 

# estimate the sample variance-covariance (VCV) matrix that models the common control relationships among 
RR 
V <- covariance_commonControl(theData, "commonControl_ID", "X_T", "SD_T", "N_T", "X_C", "SD_C", "N_C", 
metric = "RR") 
# display the VCV matrix with rounded variances and covariances 
round(V[[1]], 3) 

##       [,1]  [,2]  [,3] 
## [1,] 0.105 0.047 0.047 
## [2,] 0.047 0.087 0.047 
## [3,] 0.047 0.047 0.060 

Note the off-diagonals of the matrix are non-zero; this structure models the shared 
variance (covariance) among the three effect sizes due to the common control. The 
equation for the common-control covariance is simple: (X_C ^ 2) / N_C . 

Now let's use this matrix to model the dependent effect sizes in a meta-analysis. Here we 
will conduct a simple fixed-effect meta-analysis as presented by Lajeunesse (2011) using 
the metafor R package. 

# perform a random-effects meta-analysis on these effect sizes using the metafor R package 
suppressWarnings(suppressMessages(library(metafor))) # remove all messages when loading package 
theCovarianceMatrix <- V[[1]] 
theAlignedData <- V[[2]] 
rma.mv(RR, # a simple model that only pools the 3 effect sizes 
       V = theCovarianceMatrix, # inclusion of the sample VCV matrix 
       data = theAlignedData, # the dataset with the effect sizes 
       method = "FE", # "FE" = fixed effect 
       digits = 4)  



##  
## Multivariate Meta-Analysis Model (k = 3; method: FE) 
##  
## Variance Components: none 
##  
## Test for Heterogeneity:  
## Q(df = 2) = 25.8185, p-val < .0001 
##  
## Model Results: 
##  
## estimate       se     zval     pval    ci.lb    ci.ub           
##   0.4054   0.2356   1.7207   0.0853  -0.0564   0.8671        .  
##  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The pooled effect size sharing a common control was 0.41 with a variance of 0.0556 
(converting SE to variance with 0.2356 ^ 2). 


