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Statistical approaches to the 
problem of phylogenetically 
correlated data 

Marc J. Lajeunesse and Gordon A. Fox 

11.1 Introduction to phylogenetically correlated data 

Multi-species data sets violate some of the most basic assumptions of traditional statistics, 
and so present an important challenge for data analysis. For example, ecologists might 
want to use regression to explore the relationship between body mass and aerobic ca
pacity. Given the considerable variation in body mass across mammals, from shrews to 
whales, there is extensive opportunity to explore trends in these two quantities . However, 
linear regression assumes that each observation is independent of the other (Stuart and 
Ord 1994). What is at risk here is that data from closely related mammals will not ade
quately form independent pieces of information: the shared evolutionary history of these 
taxa will introduce correlations, or dependencies, in data (Felsenstein 1985). A conven
tional regression would treat data from multiple species of canines, cats, and weasels as 
independent, despite the potential correlations in their characteristics due to their shared 
ancestry as Carnivora. 

Because of these potential dependencies in data, and their effects on statistical assump
tions, serious inferential errors can emerge when analyzing and comparing data from 
multiple species using conventional regression methods. For example, there is no longer 
a guarantee that statistical hypothesis tests remain valid. Standard tests, like those asking 
whether the slope of the regression is significantly non-zero, are no longer valid (Diaz
Uriarte and Garland 1996). To minimize this problem with interspecific (multi-species) 
data, techniques based on the phylogenetic comparative method are used to improve the 
reliability of inferences with regression (e.g., Felsenstein 1985; Grafen 1989; Pagel 1993). 
These statistics use information on phylogenetic evolutionary history to hypothesize the 
strength of correlations across taxa. These phylogenetic correlations are then applied to 
generalized least squares (GLS) models-a statistical framework less rigid to violations of 
assumptions like independence of data. GLS modeling is also used in other areas of ecol
ogy, including studies in which serial correlations or spatial correlations occur in the data 
(see chapters 10 and 13). Thus the principles of regression modeling used in this chapter 
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are rather general, and we hope that readers can glean some broad lessons even if they 
never use multi-species data sets. 

The basic principles underlying most of these phylogenetic comparative statistics are 
also straightforward, and share two common themes. The first is to enable a phylogenetic 
framework to test hypotheses on evolutionary processes (e.g., Hansen 1997; Pagel 1999). 
The second, and perhaps more germane to many ecologists, is to offer some assurance 
that inferences drawn from multi-species analyses are valid and statistically sound (e.g., 
Price 1997; Schluter 2000). The goals of this chapter are to introduce the basic principles of 
phylogenetic comparative methods, and to demonstrate why it is important to apply these 
methods when analyzing interspecific data. We emphasize why here because this is not 
often clearly addressed in introductory texts. What gets addressed typically is how to apply 
these techniques. For example, there are already several published reviews, surveys, and 
how-to guides on comparative methods (e.g., Harvey and Pagel 1991; Martins 1996; Mar
tins 2000; Blomberg and Garland 2002; Felsenstein 2004; Garland et al. 2005; Nunn 2011; 
Paradis 2011; O'Meara 2012). By focusing here on why rather than how, we aim to provide 
a unique view of the risks of not applying these statistical tools, as well as insight on the 
limitations for what they can accomplish. 

To achieve these goals, we center the chapter on a series of Monte Carlo experiments that 
aim to answer the following: Why is it risky to use regression with multi-species data? When 
do you expect the greatest risk? What are phylogenetic correlations, and how are they used in re

gression models? What happens when the incorrect model of evolution is assumed? Monte Carlo 
simulations use randomly generated data to investigate the conditions for when statisti
cal tests, such as regression, provide reliable outcomes (Rubinstein and Kroese 2007)-or 
equally when they fail to provide reliable outcomes. This simulation approach has been 
crucial to the development of comparative phylogenetic methods and the way they are 
practiced (e.g., Martins and Garland 1991; Freckleton et al. 2002; Martins et al. 2002; 
Revell2010; Freckleton et al. 2011). Our intention is to use simulations to: (1) reveal the 
underlying principles on why it is important to apply phylogenetic correlations to regres
sion models by simulating interspecific data sets, and (2) introduce several of the powerful 
and diverse statistical functionalities offered in R. These include the widely used ape (Par
adis et al. 2004) and geiger library (Harmon et al. 2008), useful for manipulating and 
applying phylogenies for regression modeling. 

We focus exclusively on the analysis of interspecific data using linear regression, which 
historically has received the most attention (Felsenstein 1985; Pagel 1999), and for the 
purposes of this chapter, serves as an accessible introduction to more advanced statistical 
models and practices covered elsewhere (Martins and Hansen 1997; Pagel 1999; Rev
ell 2010). Our aim is to channel the reader from simple to more complex topics using 
linear regression, assuming that the reader has little to no familiarity with comparative 
methods, by introducing key concepts as they emerge. We hope that this stepwise expo
sition helps readers gain insight on the power of these statistical tools, as well as practical 
information on how to interpret results from analyses with interspecific data. 

11.2 Statistical assumptions and the comparative phylogenetic 
method 

Because closely related species tend to be more similar than distantly related species, 
methods like regression and ANOVA-which assume normality, homogeneity of variance, 
and independent (uncorrelated) errors (Stuart et al. 1999)- are not generally valid for 
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multi-species data. We use Monte Carlo experiments and regression analyses to explore 
the consequences of violating these assumptions for a simple reason: because we have sim
ulated the data, we know the right answers, so we can see how different methods affect 
our conclusions. We begin by introducing a simple linear regression model, and then ex
tend this model to include phylogenetic correlations. Because we will need to refer to bits 
of R script repeatedly, we label them somewhat like equations: the jth piece of R script we 
use is labeled R.j. 

11.2.1 The assumptions of conventional linear regression 

Let's start by decomposing a simple linear regression model. This will provide insight 
on how multi-species data sets can challenge inferences with this model. The goal of 
regression is to estimate the linear relationship between a dependent variable (y) and an 
independent (explanatory or predictor) variable (x). For example, can mass (x) predict 
aerobic capacity (y), or body size predict fitness? Perhaps the simplest way to ask this 
question is to model a straight line in x- y coordinates. This line can be described in 
equation form as: 

y; =a+ bx; + c:;. (11.1) 

Here the subscript i indexes (refers to) individual data points (or samples) of these vari
ables, and it can take on the values i = 1, 2, ... , N where N is the total number of 
observations. Equation (11.1) contains the y-intercept (a) and the slope (b) of the line. 
These are unknown, and what we want to estimate with regression. An important aspect 
of modeling the relationship between y and xis the random error (or residual) variable c:. 
This term is the stochastic noise in this relationship. It is often interpreted as all the vari
ation in y that isn't explained by x. Under the simplest linear models, c: is assumed to be 
independent across all observations; a further assumption is that these observations will 
be Normally distributed (N) around a mean of zero and have a common (or homogenous) 
variance (u 2). These assumptions on the distribution of c: can be summarized with: 

(11.2) 

Given these assumptions, let's simulate some data that fit the relationship described in 
equation (11.1) and see how regression can estimate the intercept and slope of this linear 
model. For our simulation, and given equation (11.1), let's arbitrarily set the slope to 
0.5 (b = 0.5), and the intercept to 1 (a = 1.0). What remains is to simulate c: and the 
explanatory variable x. Equation (11.2) describes the distribution of c:, and so for this term 
we will simulate random errors that are Normally distributed with a mean of zero and 
a variance of 1 (u 2 = 1.0). Likewise, data for x will be generated by randomly sampling 
a Normal distribution with a mean of 0 and variance of 1. Finally, we will generate 30 
data points for y; and x; (N = 30) and analyze these with regression. Applying equation 
(11.1) generates a correlation between y and x; our aim is to detect this relationship with 
regression. Following these parameters, we can quickly simulate random y; and x; in R as 
follows: 

N <- 30; x_mean <- 0; x_variance <- 1; a <- 1; b <- 0.5 
e <- rnorm (N , 0, 1 ) # sample 30 standard Normal deviates 

x <- x_mean + sqrt (x_var iance ) * rnorm(N, 0, 1) # random x' s (R.1) 

y <- a + b * x + e # see eq. (11.1) 



26-! ECOLOGICAL STATISTICS: CONTEMPORARY THEORY AND APPLICATION 

Using a linear regression model in R to estimate the slope and intercept from these 
simulated y; and x;: 

library(nlme) # load R library 
# get regression results 
results< - summary(gls(y- x, method="ML")) 
# print only regression coefficients 
results$tTable 

# print only residual error 
paste ( "residual error = ", results$sigma) 

we get the following R output from this gls function (bold our emphasis): 

Value Std . Error t-value p-value 
(Intercept ) 1.0292094 0.2212227 4.652369 0.0001 

X 0.4728596 0.2209420 2.140198 0.0412 

"residual error = 1.167178" 

(R.2) 

Given the sample size and the method used to simulate s to add a lot of stochastic noise 
to the model (i.e., with large variance of a 2 = 1.0), the regression model provides a rea
sonable estimation of the residual error s (1.167 ~ 1.0), and is able to detect that the 
intercept (1.029 ~ 1.0) and slope (0.473 ~ 0.5) were significantly non-zero via t-scores 
(i.e., p-values < 0.05) . (Well, in fact, it took several runs of the R.1 and R.2 scripts to get 
these nice results! More on this later when we explore how sampling error can influence 
how well regression can detect this slope.) The variances of the regression coefficients are 
also close to what we simulated. For example, the regression output reported the standard 
error (S.E.) of the intercept to be 0.22; this translates to a variance of approximately 1 
(i.e., a 2 = S.E. JN = 0.22v'35 = 1.21 ~ 1) . The slope's variance was also approximately 
1. However, note that the expected variance of the slope in this model is 1 only be
cause a; = al/a} = 1/ 1 = 1. These results make sense given the way we randomly generated 
our data. 

However, given that it took multiple runs of R.1 and R.2 to get these nice results, let's 
explore the error rates of this regression model in a more rigorous way. To achieve this, 
we will perform a Monte Carlo experiment to investigate how sampling error influences 
the way regression can detect a pre-defined relationship between y and x. In other words, 
we'll try to determine why we needed to run our previous example multiple times to 
get the results predicted by our linear model from equation (11.1) parameterized as: 
y = 1 + O.Sx + N(O, 1). More specifically, we will assess the Type II error rates of linear re
gression at differing sample sizes-that is, estimate the probability of regression statistics 
failing to detect the intercept and slope for a given N . For this simulation, we will generate 
random data following the linear model in equation (11.1), analyze these with regression, 
and repeat this process 1,000 times with increasing sample sizes (N). For each iteration, we 
will count when the p-value of each t-score was greater than 0.05 (our significance level) 
for each regression coefficient. Finally, we divide this count by the number of simulation 
replications (1,000 per N). This will give us the proportion of analyses that concluded in
correctly that the regression coefficients did not differ from zero (i.e., Type II error). The R 
script for this simulation is found in appendix 1l.A. 

Our simulation of regression analyses with N = 5 to SO revealed that with small sample 
sizes linear regression performs poorly and has large Type II error rates for detecting non
zero regression coefficients (figure 11.1). Generally, any results based on a regression with 
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Fig. 11.1 The risk of concluding null results when few data are used in regression 
analyses. Presented are results from a Monte Carlo experiment exploring the Type II error 
rates (i.e., false negative outcomes) of ordinary least square (OLS) regression with small to 
large sample sizes (N). Error rates are based on the proportion of 1,000 regression 
analyses incorrectly concluding that the intercept (a) and slope (b) were zero. Here 
regression analyses have improved ability to detect a non-zero slope and intercept w ith 
larger sample sizes (N). The R script for this simulation is in appendix 11 .A. 

N < 30 should be interpreted with caution. This is because there are too few data sampled 
to generate enough variation for our regression analyses to properly estimate the slope 
and intercept of these simulated data . There is also substantial difficulty in detecting our 
non-zero slope; this is because we modeled the residual error (e) to add a lot of stochastic 
noise to our model. 

In summary, regression is a tool that aims to estimate the relationship between two 
variables, but the ability for regression statistics to detect this relationship is often largely 
dependent on the sample size (N ). Our next goal is to repeat this simulation but with 
interspecifi.c (multi-species) data and explore how these multi-species data can invalidate 
the assumptions of how e is modeled, and why this can further impact the outcome of 
regression analyses. 

11 .2.2 The assumption of independence and phylogenetic correlations 

Interspecific data sets generally violate the assumption of independence, because species 
form a nested hierarchy of phylogenetic relationships. This shared history introduces phy
logenetic correlations among related species, and as a result, data from related species may 
not be statistically independent (Felsenstein 1985). Let us emphasize this in another way: 
data from related species may not form independent pieces of information and may be 
correlated-they share a common ancestor and therefore may also have common char
acteristics. However, we can use phylogenetic information to predict these correlations, 
and these predictions can then be applied to improve regression estimation and statistical 
inferences with interspecific data . 

But how do phylogenetic correlations come into play with regression analyses? To answer this, 
we will first need to expand our regression model. Phylogenetic correlations are a problem 
for the linear model defined in equations (11 .1) and (11.2) because the residual errors (e) 
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are assumed to be mutually uncorrelated . This linear model is in fact a simplification of a 
more general way to model E based on ordinary least squares (OLS): 

(11.3) 

This formulation is a different way of writing the linear regression model that we have 
been discussing. Writing it this way will allow us to relax assumptions about independ
ence of data points and homoscedasticity. But first, let's understand the model in equation 
(11.3). Here E has a multivariate (MV) Normal distribution, with a mean of zero and vari
ance equal to a 21. The idea is that instead of a single variance a 2 that holds for all values 
of y, we have a variance-covariance matrix of dimension N x N. This matrix gives the 
variances for each value of y on its diagonal, and has important properties for linear mod
eling because it contains information describing the dependency between each pair of 
data points. These dependencies are modeled by the covariances between pairs of values 
in all off-diagonals of the matrix. In this case, the matrix I is the identity matrix (l 's on 
the diagonal, and O's everywhere else), so a 21 tells us that, indeed, every point has the 
same variance and they are all independent of one another. 

Given this variance-covariance matrix, let's relax the assumptions of homoscedastic
ity and independence. We need to do this when the residual error (s) is not distributed 
according to equation (11.3), such as when data are phylogenetically correlated. This is 
because under these conditions, OLS models may no longer provide unbiased estimates 
of regression coefficients, and statistical tests used for null hypothesis testing may no 
longer be valid (Diaz-Uriarte and Garland 1996). If phylogenetic correlations are known 
(or hypothesized), as is the case when we have a hypothesis on the phylogenetic history 
of taxa (section 11 .2.3), then analyzing interspecific data now becomes a generalized least 
squares (GLS) problem (Pagel 1993; Revell 2010). The error term of this GLS model is 
defined as: 

(11.4) 

Here, s?LS models the variance-covariance matrix (C) to have off-diagonal covariance 
among data from different but related species. The next section describes exactly how 
we hypothesize these covariances using phylogenies. 

11.2.3 What are phylogenetic correlations and how do they affect data? 

Before exploring how regression can be modified to analyze interspecific data, we need 
to know a little more about phylogenies and how to extract phylogenetic correlations. 
Phylogenies are statistical hypotheses on the shared history of taxa (Felsenstein 2004), 
and for our purposes they contain information on the relative phylogenetic distances of 
species. The sources of phylogenies are diverse; for example, molecular or morphological 
information can be used to statistically group related species. The methods used to con
struct trees are beyond the scope of this chapter (but see Felsenstein 2004); instead we will 
generate a simple random tree by simulating lineages "branching-out" or diverging ran
domly with time. This random branching model is called a Yule birth-death process. Here 
is some R script that uses the geiger library (Harmon et a!. 2008) to simulate this birth
death process to generate a small random phylogeny with 5 species (also often described 
as a phylogeny with five "tips"): 

# Simulate random phy l ogenet i c tree with 5 spec ies us i ng geiger 

# (see Harmon 2 00 8 ) . 
library( ape ) ; library( geiger ) ; 
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K <- 5 # five species or tips on the simulated tree 
# random tree from birth-death model 
tree <- sim.bdtree (b=l, d=O, stop="taxa", K) 
# assign letter names to tips 
tree$tip.label <- paste(letters[K:l], sep="" ) 
#plots random tree graphically plot (tree ) 
plot (tree ) 
# outputs tree in Newick text format 
write.tree (tree, digits=2 ) 

(R.3) 

Running R.3, we generated the random phylogeny shown in the left of figure 11.2. 
There are several characteristics of this tree that are notable in terms of predicting phylo

genetic correlations. First, the branching pattern of this phylogeny, known as its topology, 
has two major lineages: one with species a and b, and a second with c, d, and e. One 
way to interpret these two lipeages is to think of them as two distantly related taxonomic 
groups (e.g., families or orders). These broad groupings are important because they help 
predict which species will be correlated with one another. For example, these two lineages 
will translate into two clusters of phylogenetic correlations: data from species a and b will 
be correlated with one another, but not with c, d, and e. There is no correlation between 
these two groups because they stem from the root of the tree. The root is the hypothesized 
ancestral divergence of the entire lineage. Second, note that the nodes of the tree, which 
designate historic divergence or speciation events, are clustered near the tips of the tree 
for each group. This tight grouping will create strong correlations among species within 
these groups; if they were positioned closer to the root (i.e., designating more ancient 
divergences), then correlations would be weaker. 
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0.74 a b c d e 

0.37 a 1.11 0.74 0.00 0.00 0.00 
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b 0.74 1.11 0.00 0.00 0.00 

0.21 
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e 

Fig. 11.2 Left, a phylogenetic tree generated from a random birth-death process 
(R.3). There are two major lineages: one with species a and b, and a second with c, 
d, and e. Right, the variance-covariance matrix corresponding to this phylogeny. 
All off-diagonals of this matrix contain the sum of the shared pairwise distance 
between species; for example, a and b share an internode distance of 0.74. This is 
not the branch-length distance from tip a to tip b (wh ich coincidently sums to 
0.74); rather it is only the internode distance shared by a and b. Also, note that the 
distance from root to tip for species a equals 1.11. This is because it shares an 
internode distance (common history) with b from the root of the tree of length 
0.74, followed with a divergence period after a speciation event of length 0.37. 
Branch lengths calculated from this variance-covariance matrix are plotted along 
each branch on the left. The Newick (a computer-readable notation) version of this 
tree is "(((e:0.16,d:0.16):0.0S,c:0.21 ):0.90,(b:0.37,a:0.37):0.74); ". 
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Comparative phylogenetic methods use these characteristics of phylogenetic trees, such 
as the topology and the distances between each node (known as the internode distance), 
to predict which species will be correlated with one another and to quantify the strength 
of these correlations between species. Our next step is to extract these correlations from 
our random tree. We can quickly calculate its phylogenetic correlations using the matrix 
functions available in the APE library (Paradis eta!. 2004), beginning with the raw phylo
genetic distance matrix (VCV) whose elements are the sums of branch-length internode 
distances: 

# Convert the phylogenetic tree into a variance-covariance matrix. 
# Note that we reorder the columns of this matrix to make it easy 
# to compare with the topology of the phylogeny in Figure 11.2. 
# calculate matrix from phylogeny 
VCV <- vcv(tree) 
# assign non-number names to tips 
order<- paste (letters [1:K], sep="") 
# round-down numbers, and order mat rix by name 
round (VCV[order,order], 2) 

(R.4) 

The distance matrix of our phylogeny from the left of figure 11.2 is shown in the right of 
figure 11.2. Note how there are essentially two submatrices (with non-zero values) in this 
matrix. These two submatrices designate the major lineages of our tree (i.e., group a and 
b, and group c, d, and e). Also note that all the main diagonals of this matrix equal 1.11 . 
This is the sum of all the branch-length distances (internode distances) from the root to 
tip for each species. 

The left of figure 11.2 also shows the internode branch-length distances. We want to 
emphasize that all the main diagonals of the matrix in the right of figure 11.2 are equal 
to 1.11 because all the tips (species, or terminal taxa) are aligned contemporaneously
that is, the distance from the root to each tip is the same. Trees with this alignment are 
described as having an ultrametric shape and are called dendrograms because they depict 
evolutionary time; there is a chronological ordering of nodes that hypothesize the historic 
divergences among lineages (Felsenstein 2004) . In effect, this is how we generated our tree, 
by simulating random speciation events and divergences of taxa through time (via a Yule 
process; see Harmon eta!. 2008). Trees estimated from genetic information, such as maxi
mum likelihood trees based on nucleotide sequence data, can also generate dendrograms 
by assuming constant rates of random molecular thange (e.g., a molecular clock). In fact, 
this time component of dendrograms is a crucial aspect of the comparative phylogenetic 
method, and later we will describe how it is used to hypothesize evolutionary processes 
(section 11.2.5). 

The elements of the matrix in the right of figure 11.2 are still a little abstract given 
that they are in terms of branch-length distances; remember our goal is to use the phy
logeny to estimate correlations among species. These correlations are meant to quantify 
the predicted relationship between interspecific variation and the phylogeny for which 
taxa evolved (Martins and Hansen 1997). Luckily this is straightforward, and we can 
quickly convert all these distance values into correlations by dividing each element 
in the variance- covariance matrix with the total branch-length distance from root to 
tip of the tree (i.e., 1.11). This is only possible because our tree is ultrametric. Divid
ing all the elements of the matrix by 1.11 (R script: 1 I 1. 11 * vcv (tree ) ) yields the 
correlation matrix shown in table 11.1. You can also extract this matrix by using the 
cov2cor(vcv(tree )) function in R. Now the main diagonals in table 11.1 equal 1 
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Table 11.1 Correlation matrix (C) of our simulated 

phylogeny (see figure 11.2). Numbers in bold are meant 

to emphasize the two major subgroups a-band c-d-e 
of phylogenetic correlations in this phylogeny 

a b c d e 

a 1. 00 0.67 0 . 00 0.00 0.00 

b 0.67 1. 00 0.00 0.00 0.00 

c 0.00 0 . 00 1. 00 0.81 0.81 

d 0.00 0.00 0.81 1. 00 0.86 

e 0.00 0.00 0.81 0.86 1. 00 

because taxa are perfectly correlated with themselves, and off-diagonals have the pairwise 
correlations among taxa. For example, the correlation between e and c equals 0.81 (e.g., 
0.90/1.11 = 0.81) since they only "recently" diverged-that is, recent relative to all other 
divergences on the tree. 

Given this tree and its phylogenetic correlation matrix, our next step is to update our 
regression analysis and apply these correlations to model potential dependencies in in
terspecific data . Our matrix from table 11.1 will become the phylogenetic correlation 
matrix C used in GLS regression models [equation (11.4)]. We will also use C to generate 
random interspecific data in Monte Carlo experiments. There are many packages availa
ble to simulate correlated data in R (see Harmon et a!. 2008), but here we will generate 
these directly using the Cholesky decomposition method (Rubinstein and Kroese 2008). The 
Cholesky method (described more fully following this example) takes random data and 
transforms it into new, correlated data. Our aim here is to generate random but correlated 
data with the covariance properties modeled in equation (11.4) and defined by our phy
logenetic correlations in table 11.1. To start, let's first randomly generate and plot some 
independent (ind) and correlated (cor) y's and x using the Cholesky method with this R 
script: 

K <- 5; x_mean <- 0; x_variance <- 1; a <- 1.0; b <- 0.5 

e rand <- rnorm(K, 0 , 1 ) 

x_rand <- rnorm(K, 0, 1 ) 
# independent (uncorrelated ) data following the I matrix 

I <- diag (K) # creates identity matrix for OLS model 
e ind <- t (chol(I)) % *% e_rand #as modeled in eq. 11.1.3 

x_ind <- x_mean + sqrt (x_variance ) * t (chol ( I )) %*% x rand 

y_ind <- a + b * x_ind + e_ind 
# correlated data following the C matrix 

C <- cov2cor (vcv (tree )) 

e cor<- t (chol(C )) %*% e rand# as modeled in eq. 11.1.4 

x cor<- x_mean + sqrt (x_variance ) * t (chol (C)) %*% x rand 

y_cor <- a + b * x cor + e cor 
# now organize three scatter-plots of these data 
par(mfrow=c(1,3), xpd=TRUE ) ; 

(R.S) 

plot (x_ind, y_ind, xlim=c ( -2.5,2.5 ) , ylim=c (-1.5,3.5 ) , main="random 

data" ) 

text(x_ind, y_ind, tree$tip.label, cex=l, pos=1, font=4) 
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plot(x_ind, y_ind, xlim=c (-2.5,2.5 ) , ylim=c ( -1. 5,3 .5 ) , main= "phylo
transformation" ) 

text(x_ind, y_ind, tree$tip.label, c ex=1, pos=1, font=4 ) 
arrows(x_ind, y_ind, x_cor, y_ cor, length=0 . 05) 

plot (x_ cor, y_cor, xlim=c ( -2.5,2.5), ylim=c(-1 .5 ,3.5), 
main="transformed data" ) 

text(x_cor, y_ cor, tree$tip.label, cex=1, pos=1, font=4) 

Figure 11.3 contains the R output of two plots where each data point is labeled by its 
species; the left panel has independent random data and the right panel has the same 
data but transformed via the correlation matrix (C). First note that the random data, 
once phylogenetically transformed, are now clustered more tightly among groups a-b 
and c-d-e. The phylogenetic transformation had the effect of making data more similar 
relative to their correlations. For example, b and a are now much closer together; they 
are no longer independent points and therefore have some similarity due to their shared 
phylogenetic history. 

As an aside, note that the (x, y) positioning of species b and e remained the same in both 
data sets (see center panel in figure 11 .3) . This is a property of the way we transformed 
our random data phylogenetically. Our transformation method finds an upper triangular 
matrix (U) or Cholesky matrix that satisfies the condition C = uTu (with the superscript T 
indicating the transposition of a matrix). Multiplying uT to a collection of random data 
will transform them following the correlations in C. However, if C is a proper correlation 
matrix, where diagonals all equal 1, and off-diagonals have correlations that range from 
zero to almost (but not) one, then the first (upper) element in the vector of transformed 
data will remain untransformed. In fact, what happens is that the phylogenetic transfor
mation will rotate and shear the other data relative to this untransformed data point. In 
our case, because we have two independent groups in our correlation matrix (e.g., groups 
a-band c-d-e), the transformation method will rotate and shear data relative to the way 
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Fig. 11.3 The effects of phylogenetic correlations on randomly generated x andy data. The 
leftmost panel has randomly generated (independent) data for each species (a, b, c, d, e; see 
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c 

2 

figure 1 1 .2), the center panel depicts the direction of the phylogenetic transformation on these 
random data, and the rightmost panel shows the correlated random data after a phylogenetic 
transformation (based on C; see figure 1 1 .2). The random data within groups a-band c-d-e are 
sheared and rotated closer to one other because they belong to two independent groups of related 
species (see topology of the phylogeny in figure 1 1 .2). The phylogenetic transformation was 
achieved using a Cholesky decomposition method, and the modeled relationship between x andy 
is defined in equation (1 1.1 ). 
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they are correlated with band e. But why species band e? The original correlation matrix 
calculated from the phylogeny with the vcv function (Paradis et al. 2004) actually had 
an order of e, rl, c, b, a. We re-ordered this matrix as a, b, c, d, e to simplify comparisons 
with the phylogeny shown in the left of figure 11.2. The original un-ordered C had e and 
b occupying the first (upper) elements of each submatrix. 

The random and correlated data in figure 11.3 provide a nice visualization of the effects 
of phylogenetic transformations. However, unless the predicted means of y's and x's for 
each species differ, or the means among groups a-b and c-d-e differ, then it is nearly 
impossible to predict how the phylogenetic transformation will position random data 
(especially with large K). This is because we are simulating all the x's of each species to 
be centered around zero-what really gets affected by phylogenetic correlations is the 
residual error (e) of these data, relative toy. For example, if we repeat R.S 30 times and plot 
these 30 data sets together, we can see the effects of random sampling and the unreliability 
of visually diagnosing phylogenetic effects in interspecific data. These results are in figure 
11.4 (R script for this simulation is found in appendix 1l.B with N = 30) . Visually, we can 
barely see a positive correlation between x and y, and we can only see that because we 
modeled the relationship between the dependent (y) and predictor (x) variables to have 
a moderately strong slope (see equation (11.1)) . To see why it is so difficult to visualize 
phylogenetic correlations in interspecific data sets, note that random data from species a 
can potentially occupy any part of that scatter plotted in figure 11.4. 

Despite this large scatter in figure 11.4, the phylogenetic correlations do exist. In fact, 
we can recover the correlation matrix C and the means across all species for x and y quite 
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Fig. 11.4 A simulation on the unreliability of visualizing 
phylogenetic correlations in interspecific data. Here for each 
species (a, b, c, d, e; see figure 1 1 .2), 30 x andy pairs were 
randomly generated using the Cholesky decomposition 
method (based on C, defined in table 1 1.1 ). This plot is 
equivalent to figure 11.2, but overlaid 30 times. Note that the 
random data for a single species can occupy nearly any region 
on the plot, and the only discernible pattern is the modeled 
relationship between x andy (defined in equation (1 1.1 )). The R 
script for this simulation is in appendix 1 1 .C. 
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easily in R. Again using the script found in appendix 1l.B, but now with N = 1, 000, 
and estimating the correlations between the random data generated for each species, 
we can recover the correlation matrix and means of each species for the x-variable; 
see table 11.2. With a minor modification to the script in appendix 1l.B, we can also 
estimate the correlations and means of y (see table 11.2). The correlations are not per
fect, but they are very close to C for both x and y (as in table 11.1). The means of 
each species are also very close-the x's of all species are near 0, and all y's are near 
1. Had we simulated data with a larger N, our estimates would have converged to the 
expected C (table 11.1) and to our (expected) simulated means. This simulation empha
sizes the importance of having precise species-level estimates of characteristics or traits for 
cross-species comparisons. Here, sampling error within species traits makes it harder for 
regression models to detect the underlying linear relationship between traits. However, 
only recently have comparative phylogenetic methods have been able to include within
species variation in regression analyses (Ives et al. 2007; Felsenstein 2008; Hansen and 
Bartoszek 2012). 

11.2.4 Why are phylogenetic correlations important for regression? 

Now let's return to our original regression model [equation (11.1)] and consider the case 
where Yi and Xi are two traits to be compared across multiple taxa- that is, the ith data 
point represents a characteristic from species i. In our previous simulation, the ith obser
vation could be considered as N samples from a single species, but here let's use K rather 
than N to denote the total number of species analyzed. Again, N is the number of sam
ples within species, and K is the number of species. Our goal is to repeat our previous 
simulation using OLS regression, but now with interspecific data-here we will assess the 
error rates of this regression model when the condition of independence assumed by£ is 
violated [equation (11.2)]. 

Let's start by analyzing our data set from figure 11.2 to assess how OLS and GLS models 
perform with our phylogenetically correlated data. Here are these data along with the GLS 
regression analysis including the phylogenetic correlations: 

library (ape ); library (nlme); 
# raw phylogenetically correlated data from figure 11.3 

x <- c(-0.07684503, 0.44569569, 1.15961757, -1.00146522, -0.71858873) 

y <- c(2.7098214, 2.5464312, 3.1840059, -0.2871652, - 0.7509973) 

#using ape to load our Newick phylogeny; see Figure 11.2 

tree <-

read.tree (text=" ( ( (e:0.16 ,d: 0.16) :0.05,c:0.21) :0 .90 , 
(b:0.3 7,a:0.37 ) :0.74) ;") (R.6) 

# The gls function of the nmle library requires a correlation 

# matrix in the form of a corStruct object class. 

VCV <- cov2cor(vcv(tree)) 

# convert matrix to corStruct object 
C <- corSymm(VCV[lower.tri(VCV)], fixed=T ) 

# extract only coefficients 
summary(gls(y- x, method="ML", correlation=C))$tTable 

When a phylogenetic correlation matrix is included in a GLS model like this, it is com
monly referred to as a phylogenetic generalized least squares (PGLS) regression (Martins 



Table 11.2 Correlations (top) and means (bottom) for the x andy variables (left and right, respect ively) est imated from random phylogenetically 

correlated data. Estimates are based on the script in appendix 11.8, using N ~ 1, 000 

Estimated correlation matrix for x. Estimated correlation matnx for y. 

a b c d e a b c d e 
a 1.000 0.672 -0.004 0 . 007 0.002 a 1.000 0.666 -0. 014 -0.012 -0.015 

b 0.672 1.000 ·0 . 009 0.001 -0. 006 b 0.666 1. 000 -0 . 022 ·0 . 024 -0 . 022 

c - 0.004 0.009 1. 000 0 . 810 0 . 811 c ·O.OH ·0. 022 1. 000 0.817 0.813 

d 0.007 0.001 0.810 1. 000 0.856 d -0.012 -0. 024 0.817 1.000 0.863 

e -0.002 0.006 0.811 0.856 1. 000 e 0.015 -o. 022 0. 813 0.863 1.000 

Estimated means for x. Estimated means for y. 

a b c d e a b c d e 

-0.007 -0.012 0.011 0 . 000 0.004 y 0.996 0.997 0.999 1.001 1.00 
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and Hansen 1997; Pagel 1997, 1999; Garland et al. 1999). Our PGLS analysis estimated 
the following regression coefficients: 

Value Std.Error t-value p-value 
(Intercept ) 1.2424182 0.8446677 1.470896 0 .2376872 

X 0 .7582988 0 .5545423 1.367432 0.2649284 

For comparison, let's also look at how a conventional OLS regression (without phylo
genetic correlations) estimated the same coefficients (R script of regression without the 
phylogenetic correlation matrix: gls (y ~ x, method= "ML" ) ): 

Value Std.Error t-value p - value 
(Intercept) 1.552139 0.4424145 3.508336 0.03924480 

X 1.871734 0.5647376 3.314343 0.04524494 

It may be useful to visualize these coefficients: 

plot(x, y, xlim=c(-2.5,2.5), ylim=c(-1.5,3.5)) 
text(x, y , tree$tip.label, cex=0.7, pos =3, font=4 ) 
abline(gls(y- x, method="ML")) # regression line from OLS 
# regression line from PGLS 
abline(gls(y- x, method="ML'', correlation=C) , lty=2 ) 
legend (0.5 , 0, c ("OLS", "PGLS" ) , cex=0.8, lty=l:2 ) 

The results are shown in figure 11.5. The OLS regression line seems to have a much nicer 
fit to our species data than the PGLS model-it passes right through our simulated data 
(figure 11.5). The t-scores of the OLS estimate also concluded the slope and intercept to 
be non-zero (p-values are just above 0.04 for both estimates). In contrast, the regression 
line of the PGLS estimator does not look like a very robust fit (figure 11.5), and in fact, its 
slope and intercept were not significant (p > 0.05). 

These regression results are counter-intuitive; OLS seems to provide a better fit than 
PGLS to the phylogenetically correlated data. However, contrasting the results from PGLS 
and OLS regressions underlines the importance of including phylogenetic correlations 
when analyzing interspecific data. Had we relied solely on the OLS regression, we would 
have concluded that there is a strong positive relationship between x andy. However, our 
PGLS analysis reveals that much of this relationship between x andy is due to their shared 
phylogenetic history-which is true given the way we phylogenetically transformed our 
data. Without the PGLS analysis, the findings of the OLS regression are at risk of making 
a Type II error (Diaz-Uriarte and Garland 1996; Harvey and Rambaut 1998). If we knew 
nothing about the underlying properties of our data, then we would have to conclude 
that there is no evidence for a positive linear relationship between x and y given our 
PGLS results . Although this is a conservative way to interpret results, it is appropriate 
given that only the PGLS analysis accounted for the potential phylogenetic correlations 
among species. 

However, we simulated these data, and we know a positive relationship between x andy 
exists. So what happened? Why was the OLS able to detect an effect while PGLS was not? We do 
not typically have the luxury of knowing the true underlying relationships among species 
prior to analyses; however, our simulation approach provides us an opportunity to explore 
other explanations for why disparities among analyses exist. One explanation, which we 
will consider in section 11.2.5, is that we might have used an inappropriate model of 
evolution in our PGLS analysis. Another explanation, and the primary scourge of all anal
yses, is sampling error. It doesn't matter if you have the best phylogenetic hypothesis, or 
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Fig. 11.5 Regression lines fit to randomly data generated 
with phylogenetic correlations (see figure 11 .3). Regression 
lines were estimated with either ordinary least squares (OLS) 
or a phylogenetic generalized least squares (PGLS) model. 
These phylogenetic correlations were based on the C matrix 
from table 11.1. 

the most precise trait data for your species-if you do not have enough data you will not 
be able to correctly estimate (with confidence) the underlying relationship (effect) with 
regression. In our case, this effect is the correlation (r) between x andy. Random sampling 
alone will generate data sets with strong positive or negative correlations-what we need 
is some assurance that our observed effect is true and did not emerge because of sampling 
error. We explored this issue of sampling error and low sample sizes previously with our 
simulations with conventional regression on independent data (section 11.2.1). 

One way to assess the reliability of our regression analysis is to estimate its predicted 
false negative rate (Type II error rate, or {3); that is, determine its probability of failing to 
detect a non-zero correlation. We can do this directly by first estimating our predicted 
effect, which is the expected correlation (r) between x andy, or more explicitly: 

r = bJa;;ar ( 11.5) 

In our simulation, b = 0.5 and a} = 1 (see R.1) . We also need to know the predicted 
variance of y, and given the way we modeled x and t: in equation (11.1), the predicted 
distribution of y is: 

(11.6) 

Thus y has a mean of 1 (i.e., 1 + 0.5 x 0 + 0 =a+ bx + t:) and a variance of a1~ = b2cr} + a ,2 = 

0.25 x 1 + 1 = 1.25. Given these values, the predicted correlation between x andy in our 
simulations is 0.447 ~ 0.5)1/1.25 = r. This is a large effect (Cohen 1988), and a strong 
relationship between x andy. Following our simulation conditions for x andy, we do not 
expect r to differ much between the raw and the phylogenetically transformed versions 
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of x and y (Garland and Ives 2000). Finally, using the tabulated estimates of statistical 
power (which equal 1- ,B) reported by Cohen (1988), we find that regression analyses with 
sample sizes of K = 5 will have a Type II error rate of 92o/o for detecting a correlation of 
approximately 0.45. 

Given this large error rate, interpreting any regression results with such a small sample 
size is very risky. In our case, it is impossible to determine whether our OLS regression 
detected the true underlying effect or found a strong positive effect because of sampling 
error. Examining the magnitude of the estimated slope (a = 1.87) from OLS when the 
true slope equals 0.5 may provide evidence for the latter. Likewise, our PGLS regression 
could not detect the true effect (although the slope and intercept were very near the 
predicted values of 1 and 0.5, respectively). This was because the variances of regression 
coefficients were too large. Again, these large variances are a consequence of small sample 
size. This is exactly how we want our regression analyses to behave, and why the PGLS 
model properly estimated the variances of our random data: these variances were broad, 
as predicted, given our small sample size. We do not want our variances to be biased, 
as can potentially occur with OLS, as these will increase our chances of making wrong 
conclusions with our data. 

Let's explore the interaction between sample size and phylogenetic correlations in more 
detail, and compare the Type II error rates of OLS and PGLS by simulating interspecific 
data. This will allow us to assess the error rates of concluding that the slope and intercept 
are non-zero. The R script for this simulation is in appendix ll.C. Briefly, we generated a 
random phylogeny with 100 species, and then randomly subsampled this phylogeny to 
generate subtrees of size K. We then phylogenetically transformed K random data (follow
ing R.5), and analyzed these with both OLS and PGLS. Repeating this 1,000 times for each 
K, we counted the number of times the p-values of t-scores for the regression coefficients 
were not significant (i.e., concluding that they were zero). Recall that for our linear model, 
the intercept and slope are non-zero (section 11.2.3). figure 11.6 has the simulation results 
of the error rates from our two regression models. Generally, increasing the sample size 
improves the ability to detect non-zero effects. More notably, however, the real benefits 
of including phylogenetic correlations in GLS models (i.e., PGLS) only emerge at larger 
sample sizes-given that they have significant improved ability to detect non-zero effects 
relative toOLS. 

This is typically as far as comparative analyses can take us, and the best we can glean 
from a simple PGLS regression is whether non-zero effects exist given our interspecific 
data. But with our simulated data, we know the true underlying effects, and so we can 
extend our Monte Carlo experiments to investigate how close OLS and PGLS were in es
timating the correct intercept and slope of our linear model. In our previous simulation, 
statistical tests (t-scores) assessed whether there is any evidence that a f. 0 and b f. 0. Now 
we will adjust the null hypotheses of these tests to investigate whether a f. 1 and b f. 0.5, 
and count the number of cases when t-scores incorrectly rejected our simulated regression 
coefficients (i.e., a= 1 and b = 0.5). This type of error is referred to as false positive, or Type 
I error. The simulation results are in figure 11.7, and the R script in appendix 1l.D. Note 
that the OLS regression has a fairly high probability of incorrectly concluding that the in
tercept and slope were different from a = 1 and b = 0.5, and that this probability increases 
with larger sample sizes. This is clear evidence that the OLS estimator is not optimal for 
analyzing interspecific data (Martins and Garland 1991; Diaz-Uriarte and Garland 1996; 
Harvey and Rambaut 1998; Freckleton et al. 2002; Revell 2010). These findings also coun
ter the seemingly amazing ability for OLS to detect a non-zero intercept (see Type II errors 
in figure 11.5), since OLS analyses will likely estimate significant non-zero yet erroneous 
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Fig. 11.6 The risk of incorrectly concluding null results with regression analyses of 
interspecific data. Presented are results from a Monte Carlo experiment exploring the 
Type I error rates (i.e., false positive outcomes) of OLS and PGLS regression with the 
number of species (K) varying from few to many. Error rates are based on the proportion 
of 1,000 regression analyses concluding that the intercept (a) and slope (b) were zero 
when data are phylogenetically correlated. PGLS analyses are more likely to correctly 
conclude that the slope is non-zero with larger K. The R script for this simulation is in 
appendix 11.0. 
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Fig. 11.7 The risk of concluding non-zero but erroneous intercept and slope estimates 
when using regression to analyze interspecific data. Presented are results from a Monte 
Carlo experiment exploring the Type I error rates (i.e., false positive outcomes) of OLS 
and PGLS regression with small to large number of species (K). Error rates are based on 
the proportion of 1,000 regression analyses concluding that the intercept (a) and slope 
(b) did not equal their true simulated values (i.e., a= 0.5 and b = 1 ). Data were simulated 
to have phylogenetic correlations. Here OLS analyses are more likely to incorrectly 
conclude significant erroneous intercept and slope values irrespective of K. The R script 
for this simulation is in appendix 11.0. 
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regression coefficients. There are also clearly issues with how PGLS estimates the intercept 
(see Type II errors in figure 11.5), but at least it tends to be conservative when estimating 
the intercept's standard error (i.e., it tends to be large). This favors the null hypothesis 
(see figures 11.5 and 11.6). More practically, however, evaluating whether the intercept is 
non-zero is typically not the focus of analyses. Generally the aim is to determine if the 
slope is non-zero, and PGLS seems optimal for this estimation goal with interspecific data. 
In fact, one of the original regression approaches to analyzing interspecific data excluded 
the intercept entirely from analyses (Felsenstein 1985). 

11.2.5 The assumption of homoscedasticity and evolutionary models 

Phylogenetic correlations arise because of the similarities between ancestors and their de
scendants, and we estimated these correlations using the pairwise phylogenetic distances 
between species (see table 11.1). Here, we assume that the strength of these correlations 
predict similarity among related taxa: the stronger the correlation, the greater the simi
larity of data measured between two taxa. Including these correlations in GLS models is 
meant to improve the way we model stochastic errors (s) in linear regression [equation 
(11.4)]. However, when we apply phylogenetic correlations to GLS, we are also making an 
important assumption about the stochastic nature of evolution and how this process can 
shape variation in the characteristics of species (Martins and Hansen 1997). 

For example, the way we model the residual errors actually has an important biological 
interpretation regarding the variances of traits and how they are predicted to evolve along 
the branches of a phylogeny. Implicit in the way we quantified our phylogenetic correla
tions is a time component: we expect that the strength of correlations (and therefore also 
similarity among traits) will erode linearly with time as taxa evolve independently from 
a common ancestor. This type of stochastic erosion is called Brownian motion evolution- a 
model of evolutionary change where random genetic drift is the primary process resulting 
in the loss of similarity from ancestral characteristics (Martins and Garland 1991). As traits 
follow the paths along each branch of a phylogeny, random drift results in independent 
shifts of magnitude and direction in these characteristics, and the total change accrued is 
proportional to time (O'Meara et al. 2006). 

Another way to think about Brownian motion (BM) evolution is that it is a hypothesis 
on the predicted distribution of characteristics among related species. With this in mind, 
we can interpret how we modeled the stochastic error (s) in our linear model for interspe
cific data [equation (11.4)] as the expected variance and covariance that is proportional 
to shared phylogenetic history (i.e., a 2C). Here C (as defined earlier in R.4), but now more 
precisely cBM because we know now that it has a Brownian motion structure, quantifies 
the correlations among species based on the pattern and timing of their phylogenetic 
history. Further, a 2 becomes the phylogenetic variance or evolutionary rate for x and y. 
This rate of change is an important property of BM evolution as it is a process that acts 
equally (i.e., has the same a 2 rate) among the traits of evolving taxa. This satisfies the 
assumption of homogeneity of variances (homoscedasticity) of our GLS model as applied 
via PGLS. 

Brownian motion is by far the most commonly assumed model of phenotypic evolu
tion by comparative phylogenetic methods (see Edwards et al. 1963; Lynch 1991), and is 
the model explicitly assumed when Felsenstein's (1985) widely applied phylogenetically 
independent contrasts (PIC) are used to analyze interspecific data. Our PGLS analyses 
are a generalization of this PIC approach, as both will yield similar conclusions when 
assumptions of BM are met (Rohlf 2001). Interestingly, we can only recently say this 
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confidently now, as it took nearly 30 years after the introduction of PICs to develop a 
mathematical proof that PGLS and PICs were equivalent under certain conditions (see 
Blomberg et al. 2012). Essentially, whenever phylogenetic correlations are defined by C 
(see table 11.1), and are applied to regression analyses, then the evolutionary model is a 
Brownian motion process. 

However, random drift through Brownian motion is a rather a simplistic view of how 
evolution can shape the covariances among related taxa. Other processes like natural 
selection, along with random drift, can work together to generate very different phylo
genetic correlations (Hansen 1997; O'Meara 2012) . Therefore there is always the risk that 
the phylogenetic correlations derived from Brownian motion will not adequately model 
the covariances of interspecific data. Let's explore this issue by comparing the performance 
of PGLS when the evolutionary covariance structure differs from BM evolution. Evolution 
via an Omstein-UI1lenbeck (OU) process is another stochastic model of evolution that is 
increasingly being investigated by comparative biologists (Uhlenbeck and Ornstein 1930; 
Lande 1976; Martins and Hansen 1997). Under the OU model, stabilizing selection acts to 
keep phenotypes near an optimum by removing extreme values in characters. This process 
works in conjunction with random genetic drift to erode phylogenetic correlations among 
the phenotypes of related taxa, and the process of keeping phenotypes at an optimum is 
what erodes phylogenetic correlations. However, because of this added selection compo
nent, phylogenetic correlations are no longer predicted to decay proportionally with time 
as in BM, but instead decay exponentially (i.e., at a much quicker rate) as species become 
more distantly related (Hansen 1997). 

To visualize how stabilizing selection effects the magnitude of phylogenetic correla
tions, we can simulate phylogenetic correlations derived from BM and OU processes, 
and compare how their rates of change differ relative to the same time since divergence. 
The predicted phylogenetic correlations under this exponential model of evolution are 
estimated as: 

(11. 7) 

where a is the stabilizing selection parameter that can range from zero (no selection) to 
infinity (very high selection), and where "diag" indicates a vector containing only the 
main diagonals of c8M . By manipulating the strength of stabilizing selection (a) in C0 u, 
we can visualize the effects of selection eroding phylogenetic correlations by simulating 
a random tree and plotting the divergence time versus the correlations found in C8~ 1 and 
C0 u. The script for this simulation is in appendix 11.E, and the phylogenetic correlations 
derived from these two models of phenotypic evolution are shown in figure 11 .8. As ex
pected under BM, the phylogenetic correlations are linearly proportional with the time 
since divergence (figure 11.8); they form a straight line between the time of divergence 
(i.e., shared phylogenetic branch-length distance) and the correlations. However, under 
the OU model, increasing intensity of stabilizing selection (i.e., larger values of a), the 
magnitudes of correlations erode exponentially. Taxa far apart in a phylogeny quickly 
achieve evolutionary independence relative to those under BM. When a is near 0, the 
phylogenetic correlations of an OU model (C0 u) are equivalent to cBM . However, as se
lection (a) increases in intensity, C0 u approaches I; species become nearly independent 
(section 11.2.2; also see Lajeunesse 2009). In the latter case, selection is so strong that it 
quickly erases all phylogenetic correlations among related taxa . 
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11.2.6 What happens when the incorrect model of evolution is assumed? 

With the predicted phylogenetic correlations c 0 u and cBM described above, we can sim
ulate interspecific data derived from these two models of phenotypic evolution, and then 
compare the performance of our PGLS analyses using interspecific data that do not fit the 
BM model of evolution. Thus, we will assess the Type II error rates of PGLS analyses assum· 
ing a variance-covariance structure of s based on BM evolution. This will provide some 
insight as how PGLS performs when an incorrect model of evolution is assumed with in
terspecifi.c data. We simulated interspecific data evolving via an OU model with strong 
selection (a = 3; see figure 11.8) using the R script in appendix 11.E. We then analyzed 
these data using PGLS assuming BM evolution [equation (11.6)]. The results (figure 11.9) 
revealed a slight loss of efficiency when estimating the slope with a PGLS assuming B.\f 

with data simulated under an OU model. There is also a lack of efficiency when estimatin 
the intercept. In terms of the slope parameter, this may seem like a trivial amount of er
ror when the incorrect model of evolution is applied to interspecific data. However, these 
results more likely reflect the relative similarity between BM and OU models, rather an 
apparent robustness of BM when analyzing data from a different evolutionary model. For 
example, even though the OU data were modeled with strong stabilizing selection (a = 3) 
these two models still preserve groups of correlations based on the topology of the tree; 
such as within the two major groups a-band c-d-e described earlier (although at smaller 
magnitudes; figure 11.4). Assuming BM under our simulation conditions provides (albeit 
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Fig. 11.8 The change in magnitude among phylogenetic 
correlations when they are based on different models of 
evolution. Brownian motion (BM) assumes a linear decay of 
correlations with time; whereas the Ornstein-Uhlenbeck 
(OU) model assumes an increasingly exponential decay with 
rising intensities of stabilizing selection, a = {1, 2, 3}. Note 
that when stabilizing selection is near zero, the OU model 
converges to a BM model. The R script of this simulation is in 
appendix ll.E. 
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very coarsely) some useful correlational structure to assist the linear regression with OU 
data. Nonetheless, the potential risk of incorrectly concluding a null result still exists, and 
fitting the appropriate model of evolution to your data will help minimize this risk-even 
if in our case with simulated data the improvement was only about 5%. 

11.3 Establishing confidence with the comparative phylogenetic 
method 

Using Monte Carlo experiments, we were able to investigate the challenges of analyzing 
interspecific data and ask how applications of the comparative phylogenetic method can 
improve inferences with these data. An advantage of our simulation approach is that we 
knew the underlying relationships in our simulated data. With real (observed) interspe
cific data, little to no information will be known with any certainty about such underlying 
processes. This suggests that one should make a great deal of effort to approach interspe
cific data with a robust statistical framework, and to present results in a way that provides 
confidence that the observed relationships are biologically meaningful and not statistical 
artifacts. Below, we sketch a few guidelines on how to approach and present your com
parative analyses to achieve these goals (for more extensive guidelines see also Garland et 
al. 2005; Freckleton 2009). 

Nearly all comparative phylogenetic methods assume that the phylogenies used to 
estimate phylogenetic correlations are known without error (Rohlf 2001). However, phy
logenies are only statistical hypotheses on the evolutionary history of taxa . They vary 
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Fig. 11.9 The risk of concluding null results when PGLS assumes the incorrect model of 
evolution. Presented are results from a Monte Carlo experiment exploring the Type II 
error rates (i.e., false negative outcomes) of PGLS with the number of species (K) varying 
from few to many. Error rates are based on the proportion of 1,000 regression analyses 
incorrectly concluding that the intercept (a) and slope (b) were zero. Data were simulated 
to have phylogenetic correlations derived from an Ornstein-Uhlenbeck (OU) model of 
evolution with a stabilizing selection parameter set to a = 3; these data were analyzed 
with a PGLS assuming a model of Brownian motion (BM) evolution. The R script for this 
simulation is in appendix ll.F. 
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tremendously in availability and uncertainty for distinguishing both deep and recent di
vergences, as well as their relative timing (Felsenstein 2004). Our phylogenetic correlation 
matrix (C) is at best a hypothesis of the expected true correlations (i.e., variance
covariances) that may or may not exist among the traits of related taxa. It is therefore 
always important to ask how uncertainty in C can influence the performance and statisti
cal outcomes of PGLS analyses. Incorrectly specifying C, either by using an incorrect tree 
topology or an incorrect model of evolution, can result in PGLS models performing more 
poorly than OLS models (Mittelhammer et al. 2000). Deep topological errors near the root 
of the tree are also expected to have more strongly negative effects on the performance 
of PGLS, compared with errors in the positioning of nodes near the tips of phylogenetic 
trees (Martins and Housworth 2002). Therefore, if multiple (alternative) hypotheses of di
vergences are available for a collection of taxa, it is good practice to incorporate each of 
these phylogenetic hypotheses in PGLS analyses (see Donoghue and Ackerly 1996). Doing 
so allows one to compare regression results based on alternative phylogenetic hypothe
ses if they are biologically meaningful. Alternatively, multiple separate regression analyses 
can be averaged to provide an aggregate view based on different phylogenetic hypotheses. 
Model selection criteria (e.g. , AIC scores) may also be useful in assessing the relative fit of 
competing phylogenetic hypotheses (Lajeunesse et al. 2013). 

A more common challenge with phylogenetic trees is a lack of information needed to 
connect the divergences among taxa. Complete phylogenetic information (e.g., a phy
logenetic tree that is completely bifurcated) can help minimize the Type I error rates of 
comparative analyses (see Purvis and Garland 1993). Several solutions to this problem 
of missing topologies within trees are available. For example, a sophisticated approach 
applies birth-death models to simulate random divergences among taxa with missing 
phylogenetic information (Kuhn et al. 2011). This imputation approach (see chapter 4) is 
not too different from the way we simulated our random phylogenie tree (section 11.2.3) . 
The aim of these imputations are to fill gaps of information about the topology (and 
therefore correlations in C) by randomly resolving polytomies (nodes that specify un
resolved divergences among lineages or taxa (Maddison 1989). Models of evolution can 
also be assumed to make the internode branch-length distances (i.e., simulated divergence 
times) less arbitrary (Kuhn et al. 2011). Analyses are then repeated several times with these 
randomly resolved topologies to minimize the risk of the method itself introducing bias 
to PGLS results. Alternatively, a coarse hypothesis on phylogenetic history, such as esti
mating C with a tree based on Linnaean rankings (e.g., grouped by class or order), can also 
help improve the performance of PGLS models, as long as the overall topology is correct 
and matches the true major divergence events (e.g., Freckleton et al. 2002). The disad
vantage of this coarse approach is a lack of information about relative divergence times; 
these are useful for making predictions regarding the evolutionary basis for phenotypic 
change and their predicted phylogenetic correlations (i.e., c) . Several online resources are 
also available that can help supplement phylogenetic information to generate fully bifur
cated trees. For example, the widely used phylomatic by Webb and Donoghue (2005) is an 
important tool for generating phylogenetic trees for PGLS. The massive tree of life project 
called timetree by Hedges et al. (2006) is very helpful for determining the divergence time 
between distantly related taxonomic groups. 

Another problem with PGLS analyses is the risk of over-fitting phylogenetic correlations 
to data that are weakly or not phylogenetically correlated. One common solution to this 
problem is to apply a transformation parameter such as Pagel's A. to the phylogenetic corre
lations inC (Pagel 1999). The idea is to make the correlation structure of analyses flexible 
relative to the observed phylogenetic signal (A.) of the interspecific data. A phylogenetic 
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signal is a measure that quantifies the overall statistical dependence among species traits, 
relative to their phylogenetic relationships. Applying this transformation is meant to relax 
the assumption of Brownian motion as the primary evolutionary model for phenotypic 
change, and therefore help minimize the potential of over-specifying C for interspecific 
data that are not actually phylogenetically correlated (Garland eta!. 2005). For example, 
A. can first be estimated via maximum likelihood with a PGLS model, and then A multi
plies all the off-diagonals of C (i.e., all the correlations). If A is estimated to be near zero, 
then ;.c approaches I. Therefore, when no phylogenetic signal is detected, the PGLS will 
converge to OLS, which is more efficient at estimating regression coefficients if the data 
are independent (Revell2010). Likewise, other evolutionary models can be used to adjust 
phylogenetic correlations following different models of evolution (e.g., the selection pa
rameter of the OU model; Hansen 1997) . It is also important to note that the accuracy of 
estimating evolutionary parameters like Pagel's A is largely dependent on the number of 
species included in the analysis. Generally, phylogenies with fewer than 30 species will 
provide unreliable estimates of ;_ (Revell 2010). 

11.4 Conclusions 

By focusing solely on simple linear regression and Monte Carlo experiments, we hope that 
this chapter provides some clarity to why it is important to apply this statistical frame
work to interspecific data. However, it is important to note that the same statistical issues 
and interpretive problems outlined here are equally relevant to any analyses using phy
logenetic correlations to model dependencies in interspecific data. These include more 
elaborate phylogenetic analogues such as GLS modeling to perform ANOVA or ANCOVA, 
principle component analysis (Revell 2009), and meta-analysis (Lajeunesse et a!. 2013). 
Finally, we urge readers interested in applying these methods to think beyond treating 
phylogenetic correlations as a nuisance to be controlled in analyses. Phylogenetic de
pendence in our data is not just another pitfall to avoid, like pseudoreplication. Much 
more can be gleaned from these analyses if one adopts an evolutionary framework and 
compares multiple evolutionary models (e.g., BM vs. OU) with an aim of providing insight 
into how and why phenotypic and ecological data are phylogenetically correlated (But
ler and King 2004). Dobzhansky (1973) famously commented that "Nothing in biology 
makes sense except in the light of evolution;" this also applies to ecological problems! 
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# Appendix 11.A: The risk of concluding null results when few data are used  
#                in regression analyses. 
# 
# Lajeunesse, M.J., University of South Florida, lajeunesse@usf.edu, 5/5/14 
# 
# Presented is the R script for a Monte Carlo experiment exploring the Type II error  
# rates (i.e. false negative outcomes) of ordinary least-square ("OLS" ) regression with  
# small to large sample sizes (N).  Error rates are based on the proportion of 10,000 regression 
# analyses incorrectly concluding that the intercept (a) and slope (b) were zero.   
# Example of simulation results are found in Figure 11.1. 
#  
# Inputs: none 
# Outputs: a_error_II (vector of Type II error rates of intercept [a] with increasing N) 
#          b_error_II (vector of Type II error rates of regression slope [b] with increasing N) 
 
 
library(utils); library(nlme); 
 
s <- 1000; s_pb <- 0;  
pb <- txtProgressBar(min=1, max=(s * 10), style=3)  
x_mean <- 0; x_variance <- 1; a <- 1.0; b <- 0.5;  
for(i_N in seq(5, 50, by=5)) { 
 a_null <- 0; b_null <- 0; 
 for(i_s in 1:s) { 
  e <- rnorm(i_N, 0, 1)  
  x <- x_mean + sqrt(x_variance) * rnorm(i_N, 0, 1)          
  y <- a + b * x + e   
  OLS_results <- summary(gls(y ~ x, method="ML")) 
  if(OLS_results$tTable[1,4] > 0.05) a_null <- a_null + 1 
  if(OLS_results$tTable[2,4] > 0.05) b_null <- b_null + 1 
  setTxtProgressBar(pb, i_s + s_pb) 
 } 
 s_pb <- s_pb + i_s 
 if (i_N == 5) { a_error_II <- a_null / s; b_error_II <- b_null / s; N <- i_N; } 
 else { 
  a_error_II <- c(a_error_II, a_null / s)  
  b_error_II <- c(b_error_II, b_null / s) 
  N <- c(N, i_N) 
 } 
} 
 
par(mfrow=c(1,2)); x_label <- bquote(italic(N)); 
y_a_label <- "Type II error, concluding a = 0"; y_b_label <- "Type II error, concluding b = 0"; 
plot(N, a_error_II, ylim=c(0,1), type="o", xlab=x_label, ylab=y_a_label, main="intercept (a)")  
plot(N, b_error_II, ylim=c(0,1), type="o", xlab=x_label, ylab=y_b_label, main="slope (b)") 
  



# Appendix 11.B: A simulation on the unreliability of visualizing phylogenetic  
#                correlations in interspecific data. 
# 
# Lajeunesse, M.J., University of South Florida, lajeunesse@usf.edu, 5/5/14 
# 
# Presented is the R script for a simulation where for each species (a, b, c, d, e) 
# thirty x and y pairs were randomly generated using the Cholesky decomposition  
# method (based on C; see Chapter 11).  This plot is equivalent to Figure 11.2,  
# but overlaid 10000 times.  Note that the random data for a single species can occupy  
# nearly any region on the plot, and the only discernible pattern is the modeled  
# relationship between x and y (defined in equation 11.1).     
#  
# Inputs: none 
# Outputs: Two correlation matrices, with one estimating the correlations between species 
#          across the x variable of the regression, and the other matrix among the y 
#          variable.  Also outputed are the estimated means of the y variable across species.  
 
 
library(ape); library(ggplot2); library(utils); 
 
# Generate correlated data using the Cholesky decomposition method  
# using a phylogenetic correlation matrix extracted from the NEWICK tree below. 
tree <- read.tree(text="(((e:0.16,d:0.16):0.05,c:0.21):0.90,(b:0.37,a:0.37):0.74);") 
C.Cholesky <- t(chol(cov2cor(vcv(tree)))) 
N <- 10000; K <- 5; a <- 1.0; b <- 0.5;  
pb <- txtProgressBar(min=1, max=N, style=3) 
for(i_N in 1:N) { 
 e_cor <- C.Cholesky %*% rnorm(K, 0, 1) 
 x_cor <- C.Cholesky %*% rnorm(K, 0, 1) 
 y_cor <- a + b * x_cor + e_cor 
 if(i_N == 1) { x <- x_cor; y <- y_cor; species <- tree$tip.label; } 
 else { x <- c(x, x_cor); y <- c(y, y_cor); species  <- c(species, tree$tip.label); } 
 setTxtProgressBar(pb, i_N) 
} 
 
# Plot the scatter of the phylogenetically correlated random samples. 
data_xy <- data.frame(x, y, species) 
ggplot(data_xy, aes(x, y, shape=species)) +  
 geom_point() + theme_bw() +  
 theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank() ) 
 
# Estimate the means and correlations from the random data generated above.  
# (Note the script below only estimates these for x).   
for(i_sp in tree$tip.label) { 
 x_sub <- subset(data_xy$x, data_xy$species == i_sp) 
 y_sub <- subset(data_xy$y, data_xy$species == i_sp) 
 if(i_sp == "e") { x_new <- data.frame(x_sub); y_new <- data.frame(y_sub); } 
 else { x_new <- data.frame(x_new, x_sub); y_new <- data.frame(y_new, y_sub); } 
} 
colnames(x_new) <- tree$tip.label; colnames(y_new) <- tree$tip.label; 
order <- paste(letters[1:K], sep="") # replaces names with letters 
round(cor(x_new)[order, order], 3) # estimate correlations between the species x's  
round(colMeans(x_new), 3) # estimate means between species 
round(cor(y_new)[order, order], 3) # estimate correlations between the species y's  
round(colMeans(y_new), 3) # estimate means between species  
  



# Appendix 11.C: The risk of incorrectly concluding null results with  
#                regression analyses of interspecific data. 
# 
# Lajeunesse, M.J., University of South Florida, lajeunesse@usf.edu, 5/5/14 
# 
# Presented is the R script for a Monte Carlo experiment exploring Type I error rates  
# (i.e. false positive outcomes) of "OLS"  and "PGLS"  regression with small  
# to large number of species (K).  Error rates are based on the proportion  
# of 10,000 regression analyses concluding that the intercept (a) and slope (b)  
# were zero when data are phylogenetically correlated.   
#  
# Inputs: none 
# Outputs: a_OLS (vector of Type I errors in intercept estimation with ordinary-regressions & increasing K) 
#          a_PGLS (vector of Type I errors in intercept estimation with phylogenetic-regressions & increasing K) 
#          b_OLS (vector of Type I errors in slope estimation with ordinary-regressions & increasing K) 
#          b_PGLS (vector of Type I errors in slope estimation with phylogenetic-regressions & increasing K) 
 
 
 
library(ape); library(geiger); library(utils); library(nlme); 
 
s <- 1000; s_pb <- 0;  
K <- 100; x_mean <- 0; x_variance <- 1; a <- 1.0; b <- 0.5; a_NULL <- 0.0; b_NULL <- 0.0;  
pb <- txtProgressBar(min=1, max=(s * 10), style=3) 
tree <- sim.bdtree(b=1, d=0, stop="taxa", K) 
for(i_N in seq(5, 50, by=5)) { 
 a_OLS_error <- 0; b_OLS_error <- 0; a_PGLS_error <- 0; b_PGLS_error <- 0; 
 for(i_s in 1:s) { 
  subtree <- drop.tip(tree, sample(1:K, K - i_N))  
  e <- t(chol(cov2cor(vcv(subtree)))) %*% rnorm(i_N, 0, 1) 
  x <- x_mean + sqrt(x_variance) * t(chol(cov2cor(vcv(subtree)))) %*% rnorm(i_N, 0, 1)        
  y <- a + b * x + e   
  OLS_results <- summary(gls(y ~ x, method="ML")) 
   GLS_a_t <- (OLS_results$tTable[1,1] - a_NULL) / OLS_results$tTable[1,2] 
   if(2 * pt(-abs(GLS_a_t), df=K-2) > 0.05) a_OLS_error <- a_OLS_error + 1 
   GLS_b_t <- (OLS_results$tTable[2,1] - b_NULL) / OLS_results$tTable[2,2] 
   if(2 * pt(-abs(GLS_b_t), df=K-2) > 0.05) b_OLS_error  <- b_OLS_error + 1 
  PGLS_results <- summary(gls(y ~ x, correlation=corBrownian(phy=subtree), method="ML")) 
   PGLS_a_t <- (PGLS_results$tTable[1,1] - a_NULL) / PGLS_results$tTable[1,2] 
   if(2 * pt(-abs(PGLS_a_t), df=K-2) > 0.05) a_PGLS_error <- a_PGLS_error + 1 
   PGLS_b_t <- (PGLS_results$tTable[2,1] - b_NULL) / PGLS_results$tTable[2,2] 
   if(2 * pt(-abs(PGLS_b_t), df=K-2) > 0.05) b_PGLS_error <- b_PGLS_error + 1 
  setTxtProgressBar(pb, i_s + s_pb) 
 } 
 s_pb <- s_pb + i_s 
 if (i_N == 5) { 
  a_OLS <- a_OLS_error / s; b_OLS <- b_OLS_error / s;  
  a_PGLS <- a_PGLS_error / s; b_PGLS <- b_PGLS_error / s;  
  N <- i_N;  
 } 
 else { 
  a_OLS <- c(a_OLS, a_OLS_error / s); b_OLS <- c(b_OLS, b_OLS_error / s); 
  a_PGLS <- c(a_PGLS, a_PGLS_error / s); b_PGLS <- c(b_PGLS, b_PGLS_error / s); 
  N <- c(N, i_N) 
 } 
} 
 
par(mfrow=c(1,2)); x_name <- bquote(italic(K)); 
y_a_name <- bquote(paste("Type I error, concluding   ", a==.(a_NULL))) 
y_b_name <- bquote(paste("Type I error, concluding   ", b==.(b_NULL))) 
plot(N, a_OLS, ylim=c(0,1), type="o", xlab=x_name, ylab=y_a_name, main="intercept (a)") 
lines(N, a_PGLS, type="o", lwd=1.5, lty=2) 
legend(27, 0.95, c("OLS","PGLS"), cex=0.8, lty=1:2) 
plot(N, b_OLS, ylim=c(0,1), type="o",  xlab=x_name, ylab=y_b_name, main="slope (b)") 
lines(N, b_PGLS, type="o", lwd=1.5, lty=2) 
legend(27, 0.95, c("OLS","PGLS"), cex=0.8, lty=1:2) 
  



# Appendix 11.D: The risk of concluding non-zero but erroneous intercept and 
#                slope estimates when using regression to analyze interspecific data. 
# 
# Lajeunesse, M.J., University of South Florida, lajeunesse@usf.edu, 5/5/14 
# 
# Presented is the R script for a Monte Carlo experiment experiment the Type I error rates 
# (i.e. false positive outcomes) of "OLS"  and "PGLS"  regression with small to large  
# number of species (K).  Error rates are based on the proportion of 10,000  
# regression analyses concluding that the intercept (a) and slope (b) did not  
# equal their true simulated values (i.e. a=0.5 and b=1).  Data were simulated  
# to have phylogenetic correlations.   
#  
# Inputs: none 
# Outputs: a_OLS (vector of Type I errors in intercept estimation with ordinary-regressions & increasing K) 
#          a_PGLS (vector of Type I errors in intercept estimation with phylogenetic-regressions & increasing K) 
#          b_OLS (vector of Type I errors in slope estimation with ordinary-regressions & increasing K) 
#          b_PGLS (vector of Type I errors in slope estimation with phylogenetic-regressions & increasing K) 
 
 
library(ape); library(geiger); library(utils); library(nlme); 
 
s <- 1000; s_pb <- 0;  
K <- 100; x_mean <- 0; x_variance <- 1; a <- 1.0; b <- 0.5; a_NULL <- 1.0; b_NULL <- 0.5;  
pb <- txtProgressBar(min=1, max=(s * 10), style=3) 
tree <- sim.bdtree(b=1, d=0, stop="taxa", K) 
for(i_N in seq(5, 50, by=5)) { 
 a_OLS_error <- 0; b_OLS_error <- 0; a_PGLS_error <- 0; b_PGLS_error <- 0; 
 for(i_s in 1:s) { 
  subtree <- drop.tip(tree, sample(1:K, K - i_N))  
  e <- t(chol(cov2cor(vcv(subtree)))) %*% rnorm(i_N, 0, 1) 
  x <- x_mean + sqrt(x_variance) * t(chol(cov2cor(vcv(subtree)))) %*% rnorm(i_N, 0, 1)        
  y <- a + b * x + e   
  OLS_results <- summary(gls(y ~ x, method="ML")) 
   GLS_a_t <- (OLS_results$tTable[1,1] - a_NULL) / OLS_results$tTable[1,2] 
   if(2 * pt(-abs(GLS_a_t), df=K-2) <= 0.05) a_OLS_error <- a_OLS_error + 1 
   GLS_b_t <- (OLS_results$tTable[2,1] - b_NULL) / OLS_results$tTable[2,2] 
   if(2 * pt(-abs(GLS_b_t), df=K-2) <= 0.05) b_OLS_error  <- b_OLS_error + 1 
  PGLS_results <- summary(gls(y ~ x, correlation=corBrownian(phy=subtree), method="ML")) 
   PGLS_a_t <- (PGLS_results$tTable[1,1] - a_NULL) / PGLS_results$tTable[1,2] 
   if(2 * pt(-abs(PGLS_a_t), df=K-2) <= 0.05) a_PGLS_error <- a_PGLS_error + 1 
   PGLS_b_t <- (PGLS_results$tTable[2,1] - b_NULL) / PGLS_results$tTable[2,2] 
   if(2 * pt(-abs(PGLS_b_t), df=K-2) <= 0.05) b_PGLS_error <- b_PGLS_error + 1 
  setTxtProgressBar(pb, i_s + s_pb) 
 } 
 s_pb <- s_pb + i_s 
 if (i_N == 5) { 
  a_OLS <- a_OLS_error / s; b_OLS <- b_OLS_error / s;  
  a_PGLS <- a_PGLS_error / s; b_PGLS <- b_PGLS_error / s;  
  N <- i_N;  
 } 
 else { 
  a_OLS <- c(a_OLS, a_OLS_error / s); b_OLS <- c(b_OLS, b_OLS_error / s); 
  a_PGLS <- c(a_PGLS, a_PGLS_error / s); b_PGLS <- c(b_PGLS, b_PGLS_error / s); 
  N <- c(N, i_N) 
 } 
} 
 
par(mfrow=c(1,2)); x_name <- bquote(italic(K)); 
y_a_name <- bquote(paste("Type I error, concluding   ", a!=.(a_NULL))) 
y_b_name <- bquote(paste("Type I error, concluding   ", b!=.(b_NULL))) 
plot(N, a_OLS, ylim=c(0,1), type="o", xlab=x_name, ylab=y_a_name, main="intercept (a)") 
lines(N, a_PGLS, type="o", lwd=1.5, lty=2) 
legend(27, 0.95, c("OLS","PGLS"), cex=0.8, lty=1:2) 
plot(N, b_OLS, ylim=c(0,1), type="o",  xlab=x_name, ylab=y_b_name, main="slope (b)") 
lines(N, b_PGLS, type="o", lwd=1.5, lty=2) 
legend(27, 0.95, c("OLS","PGLS"), cex=0.8, lty=1:2) 
 
  



# Appendix 11.E: The change in magnitude among phylogenetic correlations  
#                when they are based on different models of evolution.  
# 
# Lajeunesse, M.J., University of South Florida, lajeunesse@usf.edu, 5/5/14 
# 
# Presented is the R script for simulating phylogenetic correlations based 
# on Brownian motion (BM) and Ornstein–Uhlenbeck (OU) models of evolution.  
# Brownian motion assumes a linear decay of correlations with  
# time; whereas the Ornstein–Uhlenbeck model assumes an increasingly exponential 
# decay with rising intensities of stabilizing selection: alpha={1,2,3}.  Note that  
# when stabilizing selection is near zero, the OU model converges to a BM model. 
#  
# Inputs: none 
# Outputs: BM (vector of random BM phylogenetic correlations) 
#          OU_1 (vector of the same random phylogenetic correlations assuming OU with alpha=1) 
#          OU_2 (vector of the same random phylogenetic correlations assuming OU with alpha=2) 
#          OU_3 (vector of the same random phylogenetic correlations assuming OU with alpha=3) 
 
 
library(ape); library(geiger);  
 
K <- 100; plot_symbol <- 0; 
x_name <- "Time Since Divergence"; y_name <- "Phylogenetic Correlation" 
tree <- sim.bdtree(b=1, d=0, stop="taxa", K) 
for(alpha in seq(0, 3, by=1)) { 
 raw_BL <- diag(vcv(tree)) - vcv(tree) 
 C_BM <- cov2cor(vcv(tree)) 
 C_OU <- (exp(-2 * alpha * (diag(C_BM) - C_BM)) - exp(-2 * alpha * diag(C_BM)))/(2 * alpha) 
 if(alpha == 0) { plot(raw_BL, C_BM, xlab=x_name, ylab=y_name, pch=plot_symbol); } 
 else { points(raw_BL, C_OU * (1 / C_OU[1,1]), pch=plot_symbol); } 
 plot_symbol <- plot_symbol + 1 
} 
 
BM <- bquote(paste("BM and OU ", (alpha%~~%0))) 
OU_1 <- bquote(paste("OU ", (alpha==1))) 
OU_2 <- bquote(paste("OU ", (alpha==2))) 
OU_3 <- bquote(paste("OU ", (alpha==3))) 
models <- c(BM, OU_1, OU_2, OU_3)  
legend(vcv(tree)[1,1] * 0.5, 0.95, sapply(models, as.expression), cex=0.8, pch=0:4) 
 
  



# Appendix 11.F: The risk of concluding null results when phylogenetic regressions 
#                assume the incorrect model of evolution. 
# 
# Lajeunesse, M.J., University of South Florida, lajeunesse@usf.edu, 5/5/14 
# 
# Presented is the R script for a Monte Carlo experiment exploring the Type II error rates (i.e. false  
# negative outcomes) of PGLS with the number of species (K) varying from few to many.  Error rates are based  
# on the proportion of 10,000 regression analyses incorrectly concluding that the intercept (a) and slope (b) 
# were zero.  Data were simulated to have phylogenetic correlations derived from an Ornstein–Uhlenbeck (OU) model  
# of evolution with a stabilizing selection parameter set to alpha=3; these data were analyzed with a PGLS  
# assuming a model of Brownian motion (BM) evolution. 
#  
# Inputs: none 
# Outputs: a_BM (vector of Type II errors in intercept estimation with PGLS assuming BM) 
#          a_OU (vector of Type II errors in intercept estimation with PGLS assuming OU) 
#          b_BM (vector of Type II errors in slope estimation with PGLS assuming BM) 
#          b_OU (vector of Type II errors in slope estimation with PGLS assuming OU) 
 
library(ape); library(geiger); library(utils); library(nlme); 
 
s <- 1000; s_pb <- 0;  
K <- 100; x_mean <- 0; x_variance <- 1; a <- 1.0; b <- 0.5; a_NULL <- 0.0; b_NULL <- 0.0;  
alpha <- 3 
pb <- txtProgressBar(min=1, max=(s * 10), style=3) 
tree <- sim.bdtree(b=1, d=0, stop="taxa", K) 
for(i_N in seq(5, 50, by=5)) { 
 a_BM_error <- 0; b_BM_error <- 0; a_OU_error <- 0; b_OU_error <- 0; 
 for(i_s in 1:s) { 
  subtree <- drop.tip(tree, sample(1:K, K - i_N))  
  e_rand <- rnorm(i_N, 0, 1) 
  x_rand <- rnorm(i_N, 0, 1)  
  C_BM <- cov2cor(vcv(subtree)) 
  e_BM <- t(chol(C_BM)) %*% e_rand 
  x_BM <- x_mean + sqrt(x_variance) * t(chol(C_BM)) %*% x_rand       
  y_BM <- a + b * x_BM + e_BM   
  C_OU <- (exp(-2 * alpha * (diag(C_BM) - C_BM)) - exp(-2 * alpha * diag(C_BM))) / (2 * alpha) 
  C_OU <- C_OU * (1 / C_OU[1,1]) 
  e_OU <- t(chol(C_OU)) %*% e_rand 
  x_OU <- x_mean + sqrt(x_variance) * t(chol(C_OU)) %*% x_rand        
  y_OU <- a + b * x_OU + e_OU   
  BM_results <- summary(gls(y_BM ~ x_BM, correlation=corBrownian(phy=subtree), method="ML")) 
   BM_a_t <- (BM_results$tTable[1,1] - a_NULL) / BM_results$tTable[1,2] 
   if(2 * pt(-abs(BM_a_t), df=K-2) > 0.05) a_BM_error <- a_BM_error + 1 
   BM_b_t <- (BM_results$tTable[2,1] - b_NULL) / BM_results$tTable[2,2] 
   if(2 * pt(-abs(BM_b_t), df=K-2) > 0.05) b_BM_error <- b_BM_error + 1 
  OU_results <- summary(gls(y_OU ~ x_OU, correlation=corBrownian(phy=subtree), method="ML")) 
   OU_a_t <- (OU_results$tTable[1,1] - a_NULL) / OU_results$tTable[1,2] 
   if(2 * pt(-abs(OU_a_t), df=K-2) > 0.05) a_OU_error <- a_OU_error + 1 
   OU_b_t <- (OU_results$tTable[2,1] - b_NULL) / OU_results$tTable[2,2] 
   if(2 * pt(-abs(OU_b_t), df=K-2) > 0.05) b_OU_error <- b_OU_error + 1 
  setTxtProgressBar(pb, i_s + s_pb) 
 } 
 s_pb <- s_pb + i_s 
 if (i_N == 5) { 
  a_BM <- a_BM_error / s; b_BM <- b_BM_error / s;  
  a_OU <- a_OU_error / s; b_OU <- b_OU_error / s;  
  N <- i_N;  
 } 
 else { 
  a_BM <- c(a_BM, a_BM_error / s); b_BM <- c(b_BM, b_BM_error / s); 
  a_OU <- c(a_OU, a_OU_error / s); b_OU <- c(b_OU, b_OU_error / s); 
  N <- c(N, i_N) 
 } 
} 
 
par(mfrow=c(1,2)); x_name <- bquote(italic(K)); 
y_a_name <- bquote(paste("Type II error, concluding   ", a==.(a_NULL))) 
y_b_name <- bquote(paste("Type II error, concluding   ", b==.(b_NULL))) 
plot(N, a_BM, ylim=c(0,1), type="o", xlab=x_name, ylab=y_a_name, main="intercept (a)") 
lines(N, a_OU, type="o", lwd=1.5, lty=2) 
legend(5, 0.25, c("BM data","OU data"), cex=0.8, lty=1:2) 
plot(N, b_BM, ylim=c(0,1), type="o",  xlab=x_name, ylab=y_b_name, main="slope (b)") 
lines(N, b_OU, type="o", lwd=1.5, lty=2) 
legend(5, 0.25, c("BM data","OU data"), cex=0.8, lty=1:2) 
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